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Abstract

In this paper, we consider the solution of the equation
Ohu(z) =4

where @’E; is the operator related to the Bessel diamond operator iter-
ated k-time and is defind by

) k
89'1‘3 = [(BII + BIz +--- 1 B;;p)4 - (BIpH + BIp+2 : sk +B-’Cp+q)4J ’

where p + ¢ = n,B;, = gg + 27‘1‘3%,11‘- =2a; + 1,a; > —% 2, z; >
0,0 =1,2,...,n,kis a nonnegative integer and n is the dimension of

R}, In this work we study the elementary solution of the operator e;’;;."

Mathematics Subject Classification: 46F10

Keywords: diamond operator, Bessel diamond operator, O-plus operator

1 Introduction

H. Yildirim, M.Z. Sarikaya and S. Ozturk [5] have first introduced the elemen-

tary solution of the n-dimensional Bessel diamond operator and the Fourier-

Bessel transform of their convolution and showed that the solution of the

convolution form (—1)kS,,.(z) « Ry(z) is a unique elementary solution of the
bu(z) =4 .

_ |




470 Sudprathai Bupasiri

Consider the Bessel ultra-hyperbolic operator iterated k-times,

p pq k
Ok — [Z B, - Y B,,.]
=1

j=p+1

Yildirim, Sarikaya and Ogzturk [5] has shown that the generalized function
Ry(z) define by (14) is the uaique elementary solution of the operator £ix,
that is OF Rok(z) = 6 where z ER} =(z:1 = (Z1,...2.), 2 > 0,7, >
0,...,2, > 0}. Yildirim, Sarikaya and OQzturk 5] studied the Bessel diamond
operator, iterated k-times,

p 2 ptq 2
Ok = (ZBI-') ~ ZB:,.)

=1 ) =p+1
p ptq kre ptq ¥
B Saf [fas Sal
i=1 J=p+1 i=1 J=p+1

(1)

Yildirim, Sarikaya and Ozturk [5] showed that the function u(z) = (=1)*Sor ()«
Rak() is the unique elementary solution for the operator {%, where  indi-
cates convolution, and Sy, (7), Ryt (z) are defined by (14) and (17) respectively,
that is, :

OB ((—1)*Su(z) * Rae(z)) = 6(z). (2)

Furthermore, the operator @&* was first studied by Kananthai, Suantai and
Longani [1] . The g operator can be expressed in the form

p o2 2 prtq 2 2 k
o= |(Sa) - (52 2)
\i=1 Oz} J=p+1 BIJ?
P P krp o, ptq k
& ) 9% 9?
Baeselke s
[ el = Or? ; ] ];:% , 02 |

Satsanit (4] has studied the Green function and Fourier transform for o-plus
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operators, iterated k-times, defined by

- 4 62 4 pr+q 32 4
_or[(2+0Y, (a-0V]*
o597 (559

= Ok ek. (4)

I AN A=Y
= —_— 4+ e
- i=1 t =p+1 7
The purpose of this work is to study the operator
( 4/ ptq 4]
wo[(Ee) - (S
| =p+1

[ G ) g

=1 j=p+1

k

where

Let us denote the operator

P 2 pHq 2
ok = (}:Bz‘.) +( >0 B,,,.)

L

By (8) and (9) we obtain

o | (S5oe) (55 )|
[y sy

A2, 412 k
- (fef0h 2) ©)
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Thus, (5) can be written as
®p = 050% = 050%. )

For k = 1 the operator { g can be expressed in the form Op = Ap0p =0Ag
. where Up is the Bessel ultra-hyperbolic operator,

Up=B:, +Bry +---+ By, - B, - Ba,,, — - — B,,,, (8)
where p + ¢ = n and Ag is the Lapla;:e Bessel operator,
BB =Bz + Byt -+ By + By + By + -+ By, (9)
From (5) with ¢ = 0 and k = 1, we obtain
®p = A§ (10)

 where
A3=B:1+Brz+--~+BIp. (11)

We can find the elementary solution u(z) of the operator @k; that is,
dhu(z) =6, (12)

- where § is the Dirac-delta distribution. Moreover, we found that u(z) relates
to the elementary solution of the Laplace Bessel operator defined by (9) de-
~ pending on the conditions of q and k of (6) withgq=0and &k = 1. In finding
the elementary solution of (12), we use the method of convolutions of the
generalized function.

r

2 Preliminary Notes

Denoted by T¥ the generalized shift operator acting according to the law [2]

X (H?=1 sinz"""l) del e 5@l

where z,y € R}, C: = H?:lp[‘(;:(t‘.)- We remark that this shift operator is

~ closely connected with the Bessel differential operator (2].

@ +2_vﬂ _d*U 2vdU
dr?  z dz  dy? y dy

U(z,0) = f(2),

T}’(p(z):C;/ / go(\/z%+yf—2mlylcos()1,...,\/:zﬁ+y,2,—21:nyncost9n
0 0

)
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Uy(z,0) =0.

The convolution operator determined by TY is as follow:
o) = | FTo0(a) (i) dy. (13)

Convolution (13) is known as a B-convolution. We note the following proper-
ties for the B-convolution and the generalized shift operator:

() TV-1=1.
() T2 £(z) = f(a).
(¢) If f(2), 9(z) € C(R}), 9(2) is a bounded function. z > 0 and
[ 1@ (T2 d < oo,
then

r a . v;
Jeg @90 (i) ay = [ )120(0) (12324) .
(d) From (c), we have the following equality for g9(z) =1,
/ T (=) () dy = / fy) (T 97™) dy
R} RY

@) (7 +9)@) = (g+ (@)

Lemma 2.1 Given the equation Ofu(z) = 6(z) for z € R}, where 7k
is the Bessel-ultra hyperbolic operator uterated k-times defined by (8) . Then
wz) = Ry(z) is an elementary solution of the operator 0%, where

g V2k—;—|u[
R —
alz) K, (2K)
2k—n—|u|
_(:Ef+$2+ -+:1;,2,~:vf,+l—zp+2_..._ 3+q ( 2 (14)
K., (2k)
for |
and

S (2 ()

A= [ (Be2pl) p (e2)
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Lemma 2.1 Given the equation Au(z) = §(z) for z RY, where Ak s
the Laplace Bessel operator iterated k-times defined by (9) . Then u(z) =
(-1)*Sak(z) is an elementary solution of the operator X, where

I:L.'2k~n—2lv|
S2k($) = W, p+ q=n, (17)
1
|zl = (s} + 23 +--- +22)7 (18)

and

n 295 (4 1) T
wn(2K) = Iz, F(v + 2) (k)

Qn+2jul-dik ( n+2112,| —'Zk) (19)

Lemma 2.2 The convolution Rok(x) * (—1)%Sor(z) is an elementary solution
for the operator Q% iterated k-times and is defined by (1).

Lemma 2.3 Ry (z) and .Szk(:c) are homogeneous distributions of order (2k —
n — 2[v|).

We need to show that Ry (z) and (=1)*Sz(z) satisfy the Euler equation;
that is,
n 6 n 8
(2k = n — 2[v]) Ro(z) = ; T; 6_£;R2k(w)’ (2k = n — 2J2]) Sa(z) = g $i£52k($)-
Lemma 2.4 (The B-convolution of tempered distribution). Ror(z) * Sor(z)
ezists and is a tempered distiibution,
For the proof of Lemma 2.1- Lemma, 2.4, see ([5], p.378-383).

Lemma 2.5 The function R_2(z) and (—1)*S_s(z) are the inverse in the
convolution algebra of Ryx(z) and (—1)%Sai(z), respectively. That is,

R_2(z) * Rot(z) = R_gpyok(z) = Ro(z) = 4(z),
(—1)*S_ax(z) * (= 1)*Sp(z) = S-aks2k(z) = So(z) = §(z)

Lemma 2.6 (The B-convolution of Ror() and Sy(z)). Let Roi(z) and Sy(z)
defined by (14) and (17) respectively, then we obtain:

(1) Sar(z) * Som(z) = Sokt2m(T), where k and m are nonnegative integers.
(2) Ro(z) * Ron(z) = Rogyom (z), where k and m are nonnegative integers.

For the proof of Lemma 2.5 and Lemma 2.6, see [3].




l  On the solution of the n-dimensional &% operator ‘ 475

3 Main Results
Theorem 3.1 Given the equation
@3G(z) = §(z) (20)

for x € R}, where ®f is the operator iterated k-times is defined by (6) . Then

n?’

we obtain G(z) is an elementary solution of (20), where
G(z) = (Rek() * (~1)*San(2)) * (C**(2))"™ (21)

where

C(@) = Ru(z) + 5(~1754(z). (22)

Here C**{z) denotes the convolution of C(x) itself k-times, (C**(z))*~! denotes
the inverse of C**(z) in the convolution algebra. Moreover G(z) is a tempered
distribution.

Proof. We have
2 2\ k
056() = (2252 G(a) = 6@
or we can write
1 1 1 Lahr" i
(5 Ay +§D2B> (5 Pt +5E123) G(z) = d(z).
Convolving both sides of the above equation by R4(z) * (—1)2S4(z),
1 o 1o 2 (1 ., 1, .
5 8% +50% ) * (Ra(z) * (-1)*Su(2)) (5 Ay +505)  Glo)
= 8(z) * Ra(z) * (—1)*S4(2) '

or

g 2 |- 2 Lo 15 o

3 0% (Ru(o) + (C17Su(@) + 55 (Ra) + (-17S4@) ) (503 4308) 6@

= §(z) * Ry(z) * (—1)*S4(z).
By properties of convolutions,

(3 2% (178 * @) + 505 (Re@) + (1784 (5 854303) 6
= 6(z) * Ry(z) * (—1)2Sy(z).
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By Lemma 2.1 and 2.2, we obtain

k—1
(%5 ¢ Ra(z) + %5 " (-1)254(3;)) (% A2 +%Dg) G(z) = 8(z)*Re(z)*(~1)2Su(z).

or

(% Ry(z) + %(4)254(5)) (-;- AR +%D’;’,)k—la(w) = Ry(z) * (—1)’Sa(x).

Keeping on convolving both sides of the above equation by R(z)*(—1)2S,(z)
up to k — 1 times, we obtain

C*X(z) + C(z) = (Ra() * (~1)*S4y(2)) ™ (23)

the symbol xk denotes the convolution of itself k-times. By properties of Rk (z)
and Sak(z) in Lemma 2.7, we have

(Ra(z) * (=1)284(z)) ™" (z) = Rax() * (=1)*Se(z).
Thus (23) becomes,
C**(z) * G(z) = Rar(z) * (=1)%*Sg(z)

or

G(z) = (Ra(z) * (—1)*Su(z)) * (C*(z))" ™ (24)

is an elementary solution of (20).” We consider the function C**(z), since
Ry(z) * (—1)*S4(z) is a tempered distribution. Thus C(z) defined by (22) is
tempered distribution, we obtain C**(z) is tempered distribution.

Now, Ray(z) * (—1)**Sg(z) € S’, the space of tempered distribution.
Choose S’ C Dfp, where Df is the right-side distribution which is a sub-
space of I’ of distribution. Thus Ry (z) * (—1)%*Sy(z) € Di. It follow that
Ry(z) + (—1)*Sak(z) is an element of convolution algebra, since DYy is a con-
volution algebra. Hence Zemanian (6], (21) has a unique solution

G(z) = (Rax(z) * (~1)*Sai()) * (C*(z))" ™",

where (C""(m))‘—1 is an inverse of C**(z) in the convolution algebra. G(z) is
called the Green function of the operator ®@f.

Since Ry(z) * (—1)*Sg(z) and (C"“(:::))‘—1 are lies in S’, then by ([6],
P-152) again, we have (Ru(z) * (—1)%*S4(z)) * (C*(2)) *! € 5. Hence G(z)
1s a tempered distribution. 0
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Theorem 3.2 Given the equation
e | @u(z) = 8(z), (25)

where ®% 1is the operator iterated k-tumes defined by (5) , 0(x) is the Dirac-
delta distribution, T € R} and k is a nonnegative integer. Then we obtain

u(z) = (Rzk(:c) * (—1)".5'%(:::)) * G(z) (26)

or

u(z) = (Rex() * (—1)*Sex(z)) * (C* @)™ (27)

is a Green’s function or an elementary solution for the operator @Y% iterated
k-times where ®% is defined by (5) , and G(z) defined by (21) . For q =0,
then (25) becomes

Agu(z) = (), (28)

we obtain
u(z) = Ssk(T)

is an elementary solutior. of (28), where AF is the Laplace Bessel operator of
p-dimension, iterated 4k-times and is defined by (11) . Moreover, we obtain

R_4k(z) * (——1)3’°S_5k(1:) * (C‘k(z)) « u(z) = Rox(z) (29)

as an elementary solution of the Bessel ultra-hyperbolic operator iterated k-
times is defined by (8).
Proof. From (7) and (25), we have

@hu(z) = (0505) u(z) = (2). (30)
Convo.lv'mg both sides of (30) by (Rak(z) * (—1)*Sax(z)) * G(z), we obtain
(Rak(z) * (—1)*Sar(2)) *G(z)*(O50%) u(z) = §(z)*( Rax(z) * (—1)* Sax(2)) +G(=).
By properties of convolution
0% (Rax(x) * (~1)*Sae(2)) *@f (G()) ¥u(z) = (Ran(w) * (—1)*Sak(x)) *G(2)-
By Lemma 2.3 and Theorem 3.1, we obtain,

546 % u(x) = u(z) = (Rac(z) » (~1)*Suel2)) * G(2).

By Lemma 2.7 and (21), we obtain,

w(z) = (Rer(z) * (—1)* Seil(z)) * (C* )" (31)
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is an elementary solution or Green’s function of ®% operator. Now, for ¢ =0
the (25) becomes
Apu(z) = 6(z), (32)

where A‘Bk is Laplace Bessel operator of p-dimension iterated 4k-times. By
Lemma 2.2, we have

w(z) = (-1)*Sg(z) = See(z)

is an elementary solution of (28). On the other hand, we can also find u(z)
from (31). Since ¢ = 0, we have Rar(z) reduces to (=1)*Su(z). Thus, by (31)
for ¢ = 0, we obtain :
wz) = (Ser() * (~1)*Seu(2)) * ((~1)%*Sy(z)) "
= (D)™ Sorsor(x) ((~1)*Sue(x)) ™
= Sgk(:li).
From (31), we have

wz) = (Rok(x) * (=1)*Sei(2)) * (C*(z)) "
Convolving the above equation by R_gi(z) * (=1)*S_gk(z) * (C*(z)) . By
Lemma 2.6 and 2.7, we obtain
R_ge(z) % (—1)*S_g(z) * (C*(2)) * u(z) = Ro(z) * So(z) * 6(z) * Ry(z)
or
Boer(2) * (=1)"S_e1(2) + (C**(2)) + u(z) = d(z) *6(z) ¥ 6(z) * Rou(z).
It foliows that |

Rt(2) * (~1)*S_ge(z) + (C**(2)) * u(z) — Roe(z) (33)

as an elementary solution of the operator (I} iterated k-times defined by (8)
O
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