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Abstract

The purpose of this paper is to introduce the concept of separated sets,
connected and disconnected sets in biminimal structure spaces. We
obtain some fundamental properties of their sets. Moreover, we define
connected and disconnected spaces and some properties of their spaces
are obtained.

1. Introduction

The-minimal structure spaces were introduced by Popa and Noiri '[6] in
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2000 and they also introduced the concepts of my -open set and my -closed
set. In [3], Noiri and Popa defined my -compactness and my -connectedness

and investigated their properties. Bitopological Spaces were introduced by
Kelly [2], and in 2010. Boonpok [1] introduced the notion of biminimal
structure spaces, biminimal structure subspaces and study some fundamental

properties of mkmzx -closed sets and lem}( -open sets. In this paper, we

introduce the concept of separated sets, connected and disconnected sets and
study some fundamental properties of their sets. Moreover, we define
connected and disconnected spaces and some properties of their spaces are
obtained.

2. Preliminaries

In this section, we recall some notions, notations and previous results.

Definition 2.1 [5]. A subfamily my of the power set P(X) of a

nonempty set X is called a minimal structure (briefly m-structure) on X if

@ e my and X € my. Each member of my is said to be my -open and

the complement of an m y -open set is said to be my -closed.

Definition 2.2 [3]. Let X be a nonempty set and my be an m-structure
on X. For a subset A of X, the my -closure of 4 and my -interior of 4 are

defined as follows:

1. myCl(A)={F:Ac F, X\F € my },

2. mylnt(4) =U{U :U c 4,U € my }.

Lemma 2.3 [3]. Let X be a nonempty set and my be an m-structure on
X. For subsets A and B of X, the following hold:

1. myCUX\A) = X\myInt(4) and my Int(X\A) = X\myCI(A),"

_ 5, If (X\A).e my, then myCl(4)=A4 “and if Ae mX,- "then

my Int(A) = 4, I o
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3. myCl(D) =D, myCl(X) = X, myInt(Q) =D and my Int(X)
=X,

4.If A c B, then myCI(4) myCI(B) and my Int(A) ¢ myInt(B),
5. A c myCIl(4) and myIni(4) c 4,
6. myCl(m xCI(A)) = mxCI(4) and my Int(my Int(A4)) = my Int(A).

Lemma 2.4 [3]..Zet X be a nonempty set with a minimal structure and A
be a subset of X. Then x € myCI(4) i and only if U NA4=< for every
U € my containing X. '

Definition 2.5 [3]. A minimal structure my on a nonempty set X is said
to have property B, if the union of any family of subsets belonging to m x

belongs to my .

Lemma 2.6 [5]. For a minimal structure my on a nonempty set X, the

following are equivalent:
1. my has property B,
2. I myInt(V) =V, then V  my,
3. If myCI(F) ="F, then X\F € my.

Lemma 2.7 [5]. Let X be a nonempty set and my be a minimal structure

on X satisfying property B. For a subset A of X, the following properties
hold: ;

1. A e my ifand only if myInt(4) = 4,
2. A is my -closed if and only if myCI(A) = 4,

" 3. myInt(4) e my and myCI(A) is my -closed.

Definition 2.8 [1]. Let"X be a nonerr{pty set and mf\z, m,zy be minimal
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structures on X. A triple (X, mg(, m}() is called a biminimal structure space
(briefly bim-space).

Definition 2.9 [1]. A subset of a biminimal structure space (X, ml\—, mi)
is called mlym% -closed if A= mYyCl(m%CI(4)). The complement of

m}ym?\z -closed set is called m}(mﬁ( -open.

Proposition 2.10 [1]. Let (X. m‘ly, m:;) be a biminimal structure space.
If 4 and B are m_lx—mi— ~closed subsets of (X, m_ly. m?y ). then A\ B is

ml\z m/2y -closed.

Proposition 2.11 [1]. Let (X, ml\’, m)z() be a biminimal structure space.
Then A is mym% -open subset of (X, mly, m%) if and-only if A=

mby Int(m% Int(A4)).

Proposition 2.12 [1]. Let (X, mﬂ(, mg() be a biminimal structure space.
If A and B are mﬂ(mi -open subsets of (X, m&, m}(), then AUB is

mg(m/z\z -open.

Definition 2.13 [1]. Let (X, mi\/, m/z\z) be a biminimal.structure space
and Y be a subset of X. Define minimal structures m}/ and’ m)zz as follows:

my ={ANY:Ademly} and m} = {BNY:Be m%). A triple (Y, my, m¥)
is called a biminimal structure subspace (briefly bim-subspace) of
(X, mby, m%).

Let (Y, m}, m}zz) be a biminimal structure subspace of (X, mB(', m%),
and let A bea subset of Y. The my -closure and my -interior of 4 with respect
~-to ml are denoted by m}CI(4) and ment(A), respectively'(fér i=1,2). |
Then mYyCI(4) = ¥ N m'CI(4) and miCI(4) = Y N m%CI(A). '
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Proposition 2.14 [1]. Let (Y, m}z, m)zr) be a biminimal structure
subspace of (X, my, mlzx) and F be a subset of Y. If F is m}xmlzy ~closed,

then F is m;zm;“r ~closed.

3. Main Results

In this section, we define the new definitions and construct their
properties of separated and disconnected sets in biminimal structure spaces.

Lemma 3.1. Let (X, my ) be a minimal structure space and G < X. If
G is my -open,then G\ A= O ifandonly if G\ myCI(A) = O.

Proof. Let (X, my) be a minimal structure space and G < X. Suppose

that G is m y -open.

(=) Assume that G () 4 = &. Suppose that G [ myCI(4) # . Thus,
there exist x € G and x € myCI(A4). By Lemma 2.4, we have UN 4 # O
for every U € my containing x. Since G is my -openand xe G,GN 4 # Q.
Contradiction with G 4 = &. Thus, G N myCl(4) = &.

(<) Assume that G myCI(A4) = @. Since 4 < myCI(A), therefore
GN4=2a.

Definition 3.2. Let (X, m), m%) be a biminimal structure space and let
A and B be two nonempty subsets of X. Then 4 and B are called my -
separated sets if and only if myCI(4)(\B = and 4 N m'yCI(B) = @,

where i =1, 2.

Eiample 3.3. Let X = {1, 2, 3}. Define m-structures m} and mg( on
X as follows: my = {2, {1, 3}, {2, 3}, X} and m% ={@, {1}, 2}, {1, 3},
{2, 3}, X}. Then {1} and {2} are my -separated sets. But {1} and {2, 3} are

* not my -separated sets.
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Theorem 3.4. Let (X, mB{, mg() be a biminimal structure space, A and

B be two nonempty mfx -open subsets of X, where i =1, 2. Then A and B are
m y -separated sets if and only ifANB=0.

Proof. Let (X, m}\z, m,zy) be a biminimal structure space, 4 and B be a
nonempty mi\r -open subset of X, where i =1, 2.

(=) Assume that 4 and B are m y -separated sets. Thus, m'CI(4)N B

=@ and A\ m'yCI(B) = @, where i =1, 2. Hence, we have A NB=2.

(<) Assume that A1 B = @. Since 4 and B are ms( -open subsets of X'
and Lemma 3.1, we have myCI(4) N\ B = @ and A() m'yCI(B) = @, where

i=1, 2. Thus, 4 and B are my -separated sets.

Theorem 3.5. Let (X, mB(, m/z\z) be a biminimal structure space, A and
B be two nonempty subsets of X, A(\ B =@ and m;U p satisfying property
B. Then A and B are my -separated sets if and only if A and B are miiU B-
open and mitU B -clo_s‘ed, where i =1, 2. »

Proof. Let (X, mi\z, mg() be a biminimal structure space, 4 and B be two

nonempty subsets of X, 41 B = & and m;U B satisfying property B.

(=) Assume that 4 and B are my -separated sets. Since 4 and B are

my -separated sets, myCl(A)N B =2 and A m'yCl(B) = &, where
i=1,2. LetY =AU B. Then : -

myCI(4) = miyCI(A) N Y = miCIEA) N (4U B)
=% U’(@él(}:) N'B)
-AUD = A
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Thus by Lemma 2.7(2), 4 is mitU B -closed. Similarly, we have B is m;IU B
closed, where i=1,2. Since ANB=3, A=(4AUB)\B and B = (AU B)\4.

Hence, A and B are miIUB -open, where i =1, 2.

(<) Let ¥ = AU B. Since 4 and B are mi!UB—open, where i = 1, 2, and

AN B = @. By Lemma 3.1, we have myCI(4)\ B =@ and A myCI(B)
= @, where i = 1, 2. It follows that

myCl(A) N B = myCI(A)N (Y N B) = (myCI(A)NY)N B
= myCl(A) B = O,

and similarly we have, A\m'yCI(B)=®@. Therefore, 4 and B are my -
separated sets.

Theorem 3.6. Let (7, m}/ m}zr) be a biminimal structure subspace of
(X, mﬂ(, m%) and A, B c Y. Then A and B are my -separated sets if and
only if A and B are my -separated sets.

Proof. Let (Y, my, my§) be a biminimal . structure subspace of

(X, my, m%) and 4, BC Y.
(=) Assume that A and B are my -separated sets.

Since 4 and B are my -separated sets, myCl(A)N B =@ and
AN mCI(B) = @, where i =1, 2. Therefore

myCI(A)N B = myCIA)NBNY =D
and ) ' . gt "
AN mCIB) = ANmCIB)NY =S,

where i = 1, 2. Hence, A and B are my -separated sets.
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(«) Suppose that 4 and B are my -separated sets. By assumption and
4, BcY, thus
myCI(A) N B = myC(A)NY N B = myCI(A)NB =D
and
AN myCI(B) = ANY Nm'yCI(B) = AN myCI(B) ='®,
where i = 1, 2. Hence, 4 and B are m - -separated sets.

Definition 3.7. Let (X, m}y, mf'y) be a biminimal structure space and
A c X. Wecall 4 is my -disconnected set if and only if 4 = C U D, where
C and D are my -separated sets and we call 4 is my -connected set if and

only if 4 is not m y -disconnected set.

A biminimal structure space (X, ml, m%) is called my -disconnected

space if X is my -disconnected set and (X, my, m%) is called my-

connected space if X is mx -connected set.

Example 3.8. Let X ={l,2,3}. Define m-structures m}( and m;"\/ on X
as follows: mYy ={@, {1,3},{2,3}, X} and m% ={@, {1}, {2}, {1,3}, {2, 3}, X}.
Since {1} and {2} are my -separated sets, {1, 2} is my -disconnected set.
And we have X is my -connected set. Therefore, (X, m}(, mg‘() is my-
connected space.

Theorem 3.9. Let (Y, mly, m)zz) be a biminimal structure subspace of
(X, mly, mgy) and A < Y. Then A is my -disconnected set if and only if A
is- my -disconnected set.

’ Proof. By Theorem 3.6, we‘ have if C,‘ D c Y, then.Cand D are my -

" separated sets if and only if C and D are my-separated sets. Thus,
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A=CUD is my-disconnected set if and only if 4=CUD is my-
disconnected set.

By Theorem 3.9, we have the following corollary.

Corollary 3.10. Let (Y, m;z, m%) be a biminimal structure subspace of
(X, mfy, m}) and A c Y. Then A is my -connected set if and only if A is
my -connected set.

Theorem 3.11. Ler (X ,v‘m&—, mi—) be a biminimal structure space and
mﬂ(, miv have property B. Thus, X is my ~disconnected set if and only if
there exists a nonempty proper subset A of X such that A is m} -open set and
mi\» -closed set, where i = 1, 2.

Proof. Let (X, mk . m%) be a biminimal structure space and mby, m%
have property B.

(=) Assume that X is my -disconnected set. Thus, there exist nonempty

sets C and D such that X = CU D, C and D are my -separated sets. Since
C < myCI(C). and miyCIC)ND = @, CND=@. It follows that
C=X\D and D= X\C. From X =CUD c CUmiCI(D) < X. We
have X = C U myCI(D). Since

C N myCI(D) = B, C = X\m'yCI(D) = m'y Int(X\D) = m'y Int(C).
By Lemma 2.7, we have C is mfx ~open set. Then we also have D is mﬂf—

closed set. Since DN\ myCI(C)=@, D = mf;(Int(D) and Lemma 2.7, we
have D is miy -open set. Then we also have C is m‘X -closed set, where
i=12 ' '

(&:) Su'ppose'that there exists a nonempty proper subset 4 of X such that

Ais miy -open set and m'y -closed set, where i = 1, 2. Let B = X\A4. Thus,
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B is a nonempty proper subset of X and by Lemma 2.7, we have B is mS( -
closed set and mfy -open set, where i =1, 2. Therefore, X = AU B and
AN B = @. Since A and B are m'y -open set and Lemma 3.1, 4\ mxCI(B)
=& and m}CI(A)ﬂ B = &, where i =1, 2. Hence, X is my -disconnected
set.

Theorem 3.12. Let (X, mYy, m%) be a biminimal structure space and
”'.IX': mi— satisfy property B. Thus, X is my -disconnected ser if and only if
X =U UV, where U and V are nonempty m'y-open sets, i =1,2 and
UNVv =a.

Proof. Let (X, mly, mf’y) be a biminimal structure space and. mﬂ(, mg(
satisfy property B. 'A

(=) Assume that X is my -disconnected set. By Theoreﬁ 3.il, there
exists a nonempty proper subset 4 of X such that A is mﬂ( -open set and miy-
closed set, where i = 1, 2. Then by Lemma 2.7, X\4 is mfy -closed set and

' mg( -open set such that X\ 4 is a nonefnpty proper subset of X. Put U = A
and ¥V = X\A. Then X =U UV, UNV =@ and U and V are nongtilpty

m'y -open sets, i =1, 2.

(<) Assume that X = U UV, where U and V are nonempty mj( -open
sets, i=1,2 and UV =. Since U and V are mfy-open sets and
UNV =@, by Lemma 3.1, U NmyCI(V) = @ and myCIU)NV = @,
where i = 1, 2. Therefore, X'is my -disconnected set.

Theorem 3.13. Let (X, mﬂf mg() be a biminimal structure space. and

E c X 'be my -connected set. If E < AU B, A and B are m y -separated

set,then E < A or E < B.
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Proof. Assume that E = AU B, 4 and B are my -separated sets. Then
E=EN(UB)=(ENAU(ENB). Since A and B are my -separated
set, A\ mCI(B) = @ and m'yCI(A)N B = @, i =1, 2. Next we will show

that EN A= or ENB=. Supposethat ENN A = @ and E B # &.
Then

(E N 4A) N myCIE N B) < (EN A) N (myCI(E) N myCI(B))
= EN (4N mCI(B))
=
Similarly, we have mfyCI(E NANENB)=S. Then E(1 4 and EN B
are my -separated sets. Therefore, E is my -disconnected set. This is

contradiction with E is my -connected set. Thus E(1 A =@ or E(1B = J.

So, we have:
Case 1. If E(] 4 = &, then we have
Ez(EﬂA)U(EﬂB): E () B. Hence E C B.
Case2.If EN B = &, then we have

E=(ENAU(ENB)=ENA Hence E c A

Theorem 3.14. Ler (X, m]X, m%) be a biminimal structure space and
Ec X be my-connected set. If E C AC mf‘XCl(E), where i =1, 2, then

A is my -connected set.

Proof. Assume that E c A € myCI(E). We will show that 4 is my -
connected set. Suppose that A4 is my -disconnected set. Thus, there exist

nonempty sets C and D, such that A CUD CﬂmXCl(D) @ and

mXCl(C)nD g, for i =1, 2. Smce E is my _connected set and E c
€ U D and Theorem 3.13, we have E < C or E c D. '
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Case 1. If E ¢ C, then we have m'yCI(E)c miyCI(C) and m'yCI(E)
N D = @. Since
DcCUD=4c myCIE), D = mCE)N D = @.
Contradiction with D = @,
Case 2.1f E c D, then we have myCI(E)c myCI(D) and m’CI(E)N
C =@. Since
CcCUD=4cmyCIE), C = myCE)NC = @.
Contradiction with C # @,

Therefore, 4 is my -connected set.

Corollary 3.15. Let (X, my, m}) be a biminimal structure space and

Ec X be my -connected set. If E is m x -connected set, then mfyCl(E) is

my -connected set, where i = 1, 2.

Proof. Since Ecm XCJ(E) < m'yCI(E) and Theorem 3.14, we have

mlyCI(E) is my -connected set, i = 1, 2.

Theorem 3.16. Ler (X, mjy, mi) be a biminimal structure space and
Ec X. Ifforany x, yeE and x # v, there exists m x -¢connected set F c E

such that x, y € F. Then Eis my -connected set.

Proof. Assume that for any x, y € £ and x # ¥, there exists my -
connected set /' < E such that x,.y € F. Next we will show that E'is my -
connected set. Suppose that E is my -disconriected set. Then there exist
nonempty sets 4 and B such that E = AU B, 4 and B are my -separated
sets. SmceA and B are my separated sets, -4 # @ B #O and A(1B=0.
Then we also have xeA yeEB and x;ty Thus x, y€ E and by

assumption there exists m 'y -connected . set F c £ such that x, y e F.
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Since F < E = AU B, by Theorem 3.13 we have F 4 or F < B. Then
x,y € A or x, y € B. This is contradiction with 4[| B = &. Therefore, E

is m y -connected set.
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