

Integrated Ferroelectrics

An International Journal

ISSN: 1058-4587 (Print) 1607-8489 (Online) Journal homepage: http://www.tandfonline.com/loi/ginf20

Predication of Thermal Conductivity of Mg_2X (X = Ge and Sn) by Molecular Dynamics

M. Rittiruam, A. Vora-Ud, W. Impho & T. Seetawan

To cite this article: M. Rittiruam, A. Vora-Ud, W. Impho & T. Seetawan (2015) Predication of Thermal Conductivity of Mg_2X (X = Ge and Sn) by Molecular Dynamics, Integrated Ferroelectrics, 165:1, 61-72, DOI: 10.1080/10584587.2015.1062684

To link to this article: http://dx.doi.org/10.1080/10584587.2015.1062684

Published online: 22 Oct 2015.

Submit your article to this journal 🕑

Article views: 2

View related articles

View Crossmark data 🖸

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ginf20 Integrated Ferroelectrics, 165:61–72, 2015 Copyright © Taylor & Francis Group, LLC ISSN: 1058-4587 print / 1607-8489 online DOI: 10.1080/10584587.2015.1062684

Predication of Thermal Conductivity of Mg₂X (X = Ge and Sn) by Molecular Dynamics

M. RITTIRUAM,^{1,2} A. VORA-UD,^{1,2} W. IMPHO,³ AND T. SEETAWAN^{1,2,*}

¹Simulation Research Laboratory, Thermoelectrics Research Center, Kesearch and Development Institution, Sakon Nakhon Rajabhat University, 680 Nittayo Road, Mueang District, Sakon Nakhon, 47000, Thailand

²Program of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, 680 Nittayo Road, Mueang District, Sakon Nakhon, 47000, Thailand

³Faculty of Industrial Techonology, Sakon Nakhon Rajabhat University, 680 Nittayo Road, Mueang District, Sakon Nakhon, 47000, Thailand

Molecular dynamics (MD) simulations of elastic and thermal properties of Mg_2X (X = Ge and Sn) based on anti-fluorite structure (CaF₂) at temperature range 300-700 K were presented. The MD simulation in this study involving the Morse-type potential functions, and the Busing-Ida potential to determine the interatomic interaction among cluster atoms size $4 \times 4 \times 4$ unit cells of 768 atoms $\{512-Mg^{1.2+}, 256-(Ge, Sn)^{2.4-}\}$. The potential parameter functions of the cluster atoms were indicated by random numerical method and fit lattice parameter from the experimental data obtained at room temperature. The calculation of lattice parameter, pressure, temperature and energy contributes to evaluation of the elastic properties. The results showed that Mg_2 Ge had better elasticity than Mg_2 Sn. On the other hand, Mg_2 Sn had less thermal conductivity than Mg_2 Ge. Since thermal conductivity decreases with increasing temperature, the interesting feature of thermal conductivity is particulary useful to enhance thermoelectric performance of materials.

Keywords Molecular dynamics; Mg₂Sn; Mg₂Ge; thermal properties; elastic properties

1. Introduction

 Mg_2X (X = Ge, Sn) compounds based on anti-fluorite (CaF₂) type structure are p-type thermoelectric (TE) materials. In general, good TE properties have large Seebeck coefficient, high electrical conductivity, and low thermal conductivity [1-4]. The composition element of Mg_2Ge and Mg_2Sn are green TE materials [1], and are in the interest of researchers to further study on TE properties. In addition, the height pressure behaviours of Mg_2Ge and Mg_2Sn are isostructure alkali-metal oxide Li_2O [5] and anti-fluorite type which can be assimilated to perfect crystal structure [6]. However, elastic properties, which is composed of low thermal expansion coefficient, high hardness, low compressibility.

Received December 22, 2014; in final form May 22, 2015.

^{*}Corresponding author. Email: t_seetwan@snru.ac.th

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ginf.

Figure 1. (a) 1 unit cell and (b) $4 \times 4 \times 4$ unit cells of Mg₂Ge and Mg₂Sn for MD calculation.

high bulk modulus, and high elastic modulus (Young's modulus), is also reported [7–12]. Thermal properties is given heat capacity, as defined by Dulong–Petit law at temperature more than 500 K for Mg₂Ge and more than 400 K for Mg₂Sn. Much studies also reveal that thermal conductivity of Mg₂Ge and Mg₂Sn decreased with increasing temperature is a good behavior of TE materials [6, 8, 13–17]. In addition, a study of TE properties can be used computer simulation for determining before experiment. Recently, molecular dynamics was used to explore thermal conductivity of Bi–doped PbTe thermoelectric material and reported its success [18].

In this work, we focus on molecular dynamics study of the elastic properties and thermal properties of Mg_2X (X = Ge, Sn) to predict thermal conductivity.

2. Computational Details

62

The Mg₂Ge and Mg₂Sn of 768 atoms $\{512-Mg^{1.2+}, 256-(Ge, Sn)^{2.4-}\}$ were calculated through the MD method as shown in Fig. 1. The scaling method, Nose method [19] and Andersen method [20] were used to control pressure and temperature, and employed in calculation process of the lattice parameter, heat capacity and thermal conductivity, as shown in Table 1.

Calculation conditions for MD method of Mg2Ge and Mg25h							
Calculation conditions	Lattice parameter	Heat capacity	Thermal conductivity				
System	768 atoms (512 cations and 256 anions) Mg = 512, Ge, Sn = 256; CaF ₂ crystal structure						
Control - Temperature - Pressure Number of steps	Scaling Scaling 100,000	Scaling No control 100,000	Nose [19] Andersen [20] 100,000				

 Table 1

 Calculation conditions for MD method of Mg2Ge and Mg2Sn

The MD process calculated the atom positions and volecities from Newton equation of motion through Verlet's algorithm [21], and measured the running time per step at 2.0×10^{-15} s. Ewald's summation [22] evaluated the total internal energy base on MXDORTO program [23], as described by equations below;

$$\vec{F}_i = m_i \frac{\partial^2 \vec{r}_i}{\partial t^2} \, i = 1, ..., \mathbf{N}$$
⁽¹⁾

$$\vec{F}_i = -\frac{\partial U\left(r_1, \dots, r_N\right)}{\partial \vec{r}_i} \tag{2}$$

$$E_i = U_{ij} + E_{Ki}; E_{Ki} = \frac{1}{2}m_i v_i^2$$
(3)

$$U(r) = \sum_{ij} U_{ij}(r) + \sum_{ijk} U_{ijk}(r) + \sum_{ijkl} U_{ijkl}(r) + \dots$$
(4)

whereas, \vec{F} , m, \vec{r} , $U(r_1, ..., r_N)$, E_K , v, U, i, j and k were force, mass, position, potential function for N atoms, kinetic energy, volocity, and potential energy and atom of i, j and k, respectively. To determine the potential function U(r) for interatomic interaction, this work employed the Morse-type [24], and the Busing-Ida potential functions[25];

$$U_{ij}(r_{ij}) = \frac{z_i z_j e^2}{r_{ij}} + f_0(b_i + b_j) \exp\left(\frac{a_i + a_j - r_{ij}}{b_i + b_j}\right) - \frac{c_i c_j}{r_{ij}^6} + D_{ij} \left\{ \exp\left[-2\beta_{ij}(r_{ij} - r_{ij}^*)\right] - 2\exp\left[-\beta_{ij}(r_{ij} - r_{ij}^*)\right] \right\}$$
(5)

whereas, f_0 is repulsion betaween atom in vacuum = 4.186, z_i and z_j are the effective partial electronic charges on the i^{th} and j^{th} ions. r_{ij} is the inter-atomic distance, r_{ij}^* is the bond length of the cation-anion pair in vacuum. a, b and c are the characteristic parameters depending on the ion species. The potential function, D_{ij} and β_{ij} , describes the depth and shape of this potential, respectively. The first term describes the Coulomb interactions and denotes core repulsions for the second term. The third term is a Morse-type that applied only to cation-anion pairs.

3. Results and Discussion

3.1 Structure Expansion

The structure expansion was described by lattice parameter, linear thermal expansion coefficient (α_{lin}) and mean square displacement (MSD), as shown in Figs. 2, 3 and 4. The lattice parameters were calculated by MD method, and fit to literature data [26–28] at room temperature.

The α_{lin} had similar results as S. Ganeshan [9] and H. Wang [8] studies which was different about 6% for Mg₂Sn and 4% for Mg₂Ge. In this study, the lattice parameters were expanded and atoms in the structure which increased the area of vibraion with increasing temperature. The structure of Mg₂Sn was larger and expanded better than Mg₂Ge. The linear thermal expansion coefficient and mean square displacement could be analyzed by following equations;

$$\alpha_{lin} = \frac{1}{a(T_0)} \left(\frac{a(T) - a(T_0)}{T - T_0} \right)_{P_0}$$
(6)

Figure 2. Lattice parameters of Mg₂Ge and Mg₂Sn at various temperatures.

$$MSD = \langle [r(t) - r(0)]^2 \rangle = \langle r(t)^2 \rangle + r(0) - 2r(0) \langle r(t) \rangle$$
(7)

where α_{lin} , a(T), T_0 , P_0 , r(t) and r(0) were linear thermal expansion coefficient, lattice parameter at temperature T(K), room temperature, atmospheric pressure, displacement at time t and displacement at initial time, respectively.

3.2 Elastic Properties

The elastic properties, comprising compressibility (β), bulk modulus (B), stress (τ), strain (ε) and Young's modulus (E_Y), were analyzed by lattice parameter at 0.0001, 0.75 and 1.5

Figure 3. Linear thermal expansion coefficient of Mg₂Ge and Mg₂Sn at various temperatures.

Figure 4. Mean square displacement of Mg₂Geand Mg₂Sn at various temperatures.

GPa and temperature range 300-700 K, as following equations;

$$\beta = \frac{3}{a(P_0)} \left(\frac{\partial a(P)}{\partial P} \right)_T \tag{8}$$

$$B = \frac{1}{\beta} \tag{9}$$

$$\tau = \frac{F}{A_0} \tag{10}$$

$$\varepsilon = \frac{\Delta l}{l} \tag{11}$$

$$E_{\rm Y} = \frac{\tau}{\varepsilon} \tag{12}$$

where β , a(P), B, τ , F, A_0 , ε , l and E_Y involved compressibility, lattice parameter at pressure P(Pa), bulk modulus, stress, strain, action force, based area, length of cluster and Young's modulus, respectively.

The linear compressibility (β_{lin}) compared with the volume compressibility (β_{vol}) [7], was resulted from the compressibility, which was analyzed though lattice parameter. In this work, the linear compressibility of Mg₂Ge and Mg₂Sn were different from the reference data about 9% and that of Mg₂Sn intersected with the reference data at temperature 500 K as shown in Fig 5. The bulk modulus (*B*) was evaluated by inverse of β and good agrees with the results of H. Wang [8] and S. Ganeshan [9] as shown in Fig. 6. From the compressibility and bulk modulus showed that Mg₂Ge had a resist of pressing better than Mg₂Sn. The stress (τ) and strian (ε) of Mg₂Ge and Mg₂Sn indicated Young's modulus as shown in Fig. 7. The calculation has shown that Mg₂Ge had more stress than Mg₂Sn. On the otherhand the strian of Mg₂Ge was less than Mg₂Sn. The Young's modulus was compared with the results of S. Ganeshan [9], shown in Fig. 8. From the foregoing, the Young's modulus described Mg₂Ge which had better elasticity than Mg₂Sn because bulk modulus and stress were greater but less strain.

M. Rittiruam et al.

Figure 5. The relationship of temperature to compressibility of Mg₂Ge and Mg₂Sn.

Figure 6. The relationship of temperature to bulk modulus of Mg₂Ge and Mg₂Sn.

Figure 7. The relationship of temperature to stress and strian of Mg₂Ge and Mg₂Sn.

66

Figure 8. The relationship of temperature to Young's modulus of Mg₂Ge and Mg₂Sn.

3.3 Thermal Properties

The thermal properties were composed of heat capacity and thermal conductivity. The heat capacity of lattice dilatational term (C_d) was evaluated by lattice parameter, α_{lin} and β_{lin} . The heat capacity at constant volume (C_V) was also evaluated by gradient of the total internal energy. In addition, the heat capacity at constant pressure (C_P) was evaluated by sum of C_V and C_d . The internal energy showed that Mg₂Ge had energy less than Mg₂Sn due to the MSD of Mg₂Ge was less than Mg₂Sn. In Fig. 10 the heat capacity was compared with the results of S. Ganeshan [9], H. Wang [8], L. Na-Na [15] and also shows that heat capacity of Mg₂Ge less than Mg₂Sn. The heat capacity of Mg₂Ge agreed with the result data [8, 13] at temperature 300–550 K. ThusC_V was in a constant–rate at 650 K which was agreed with Dulong–Petit law. The C_V of Mg₂Sn showed a good agreement with the result data [8], and Dulong–Petit law at temperature 600 K. The relationship of temperature to

Figure 9. Internal energy of Mg₂Ge and Mg₂Sn at various temperatures.

Figure 10. The relationship of temperature to heat capacity of Mg_2Ge and Mg_2Sn .

Figure 11. Heat flux auto-correlation function (ACF) of Mg_2Ge and Mg_2Sn at 300 K, 500 K and 700 K versus time.

Figure 12. Thermal conductivity of Mg₂Ge and Mg₂Sn at 300 K, 500 K and 700 K versus time.

heat capacity for Mg2Ge and Mg2Sn can be evaluated by equations;

$$C_{\rm d} = \frac{(3\alpha_{lin})^2 V_m(T)}{\beta} T \tag{13}$$

$$C_{\rm V} = \left(\frac{\partial E({\rm T})}{\partial T}\right)_{\rm V} \tag{14}$$

$$C_{\rm P} = C_{\rm V} + C_{\rm d} \tag{15}$$

where C_d , $V_m(T)$, C_V , E(T) and C_P are heat capacity of lattice dilatational term, molar volume at temperature T (K), heat capacity at volume constant, total internal energy and heat capacity at pressure, respectively.

The thermal conductivity (κ) could be evaluated by sum of electrical contribution to thermal conductivity term (κ_{el}), lattice contribution to thermal conductivity term (κ_{lat}) and orther contribution to thermal conductivity term κ_{other} . This MD result presents the lattice contribution to thermal conductivity; hence $\kappa \approx \kappa_{lat}$. The κ_{lat} was evaluated from time integral of the heat flux auto-correlation function (ACF), by using the Green-Kubo

M. Rittiruam et al.

Figure 13. Thermal conductivity of Mg₂Ge and Mg₂Sn at various temperatures.

relation [29], as shown in equations;

$$\kappa_{lat} = \frac{V}{3k_B T^2} \int_0^\infty \langle S(t)S(0) \rangle dt$$
(16)

$$S(t) = \frac{1}{V} \left[\sum_{j} E_{j} v_{j} + \frac{1}{2} \sum_{j} \sum_{i \neq j} r_{ij} \left(f_{ij} v_{j} \right) \right]$$
(17)

$$E_{j} = \left\{ \frac{1}{2}m_{i}v_{j}^{2} + \frac{1}{2}\sum_{i\neq j}U_{ij}(r_{ij}) \right\} - E_{av}$$
(18)

where κ_{lat} , k_B , V, S(t), E, m, v, r_{ij} , f_{ij} , $U_{ij}(r_{ij})$ and E_{av} are lattice thermal conductivity, Boltzmann constant, volume, auto-correlation function, energy, mass, velocity, interatomic distance between atom i and j, force between atom i and j, the Busing-Ida potential between atom i and j, and average energy of the system, respectively.

From the calculation, it was found that the relationship of κ_{lat} dependent ACF and inverse temperature. ACF inverse of time (ps and dependent of temperature, as shown in Fig. 12 and 13). The thermal conductivity of Mg₂Ge and Mg₂Sn have values 5.53 W m⁻¹ K⁻¹ and 3.37 W m⁻¹ K⁻¹ at 300 K, which decrease to 1.78 W m⁻¹ K⁻¹ and 1.44 W m⁻¹ K⁻¹ at 700 K, respectively. Mg₂Sn is more interesting to enhance thermoelectric performance because it has thermal conductivity less than Mg₂Ge. The lattice thermal conductivity (κ_{lat}) of Mg₂Ge and Mg₂Sn were compared with the total thermal conductivity (κ_{tot}) [8, 14, 17, 30] as shown in Fig. 13. In addition, this κ_{lat} was less than the reference data because the reference shows total conductivity composing of orther contribution to thermal conductivity term (κ_{other}). However, the κ_{lat} of Mg₂Ge had a good agreement with M. Akasaka [14].

4. Conclusion

Molecular dynamics was used to calculate lattice expansion, elastic and thermal properties of Mg_2Ge and Mg_2Sn . The lattice expansion showed that Mg_2Sn had structure, linear expand and area of vibration better than Mg_2Ge . The elastic properties showed that Mg_2Ge had better elasticity than Mg_2Sn . Thermal properties reported that Mg_2Sn had the heat capacity, and the thermal conductivity better than Mg_2Ge . This work found that Mg_2Sn was attractive for thermoelectric performance study. However, it should be further study of electrical properties for evaluating thermoelectric properties to confirm materials before experiment.

References

- G. Jiang, L. Chen, J. He, H. Gao, Z. Du, X. Zhao, T. M. Tritt, and T. Zhu, Improving p-type thermoelectric performance of Mg₂(Ge,Sn) compounds via solid solution and Ag doping. *Intermetallics.*, 32, 312–317 (2013).
- 2. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida, and K. Masumoto, Preparation and Thermoelectric Properties of $Mg_2Si_{1-x}Ge_x$ (x = 0.0~0.4) Solid Solution Semiconductors. *Mater. Trans.*, **33**, 845–850 (1992).
- 3. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida, and K. Masumoto, Temperature Dependence of Thermoelectric Properties of Mg₂Si_{0.6}Ge_{0.4}. *Mater. Trans.*, **33**, 851–855 (1992).
- J. Tani, and H. Kido, Thermoelectric properties of Bi-doped Mg₂Si semiconductors. *Physica B.*, 364, 218–224 (2005).
- 5. T. Aizawa, and R. B. Song, Mechanically induced reaction for solid-state synthesis of Mg₂Si and Mg₂Sn. *Intermetallics.*, **14**, 382–391 (2006).
- H. Peng, C. L. Wang, J. C. Li, H. C. Wang, Y. Sun, and Q. Zheng, Elastic and vibrational properties of Mg2Si_{1-x}Sn_x alloy from first principles calculations. *Solid State Communications.*, 152, 821–824 (2012).
- 7. Y. S. Raptis, G. A. Kourouklis, E. Anastassakis, E. Haro-Poniatowski, and M. Balkanski, Anharmonic effects in Mg_2X (X = Si, Ge, Sn) compounds studied by Raman spectroscopy. J. *Physique.*, 48, 239–245 (1987).
- 8. H. Wang, H. Jin, W. Chu, and Y. Guo, Thermodynamic properties of Mg₂Si and Mg₂Ge investigated by first principles method. J. Alloys. Comp., **499**, 68–74 (2010).
- S. Ganeshan, S. L. Shang, Y. Wang, and Z. -K. Liu, Temperature dependent elastic coefficients of Mg₂X (X = Si, Gc, Sn, Pb) compounds from first-principles calculations. J. Alloys. Comp., 498, 191-198 (2010).
- 10. C. L. Zhang, P. D. Han, X. Yan, C. Wang, L. Q. Xia, and B. S. Xu, First-principles study of typical precipitates in creep resistant magnesium alloys. *J. Phys. D: Appl. Phys.*, **42**, 125403 (2009).
- R. G. Schwartz, H. Shanks, and B. C. Gerstein, Thermal study of II–IV semiconductors: Heat capacity and thermodynamic functions of Mg₂Pb from 5–300°K. J. Solid State Chem., 3, 533–540 (1971).
- 12. G. A. Roberts, E. J. Cairns, and J. A. Reimer, Magnesium silicide as a negative electrode material for lithium-ion batteries. *J. Power Sources.*, **110**, 424–429 (2002).
- 13. J. Tani, H. Kido, Lattice dynamics of Mg₂Si and Mg₂Gc compounds from first-principles calculations. *Comp. Mat. Sci.*, **42**, 531–536 (2008).
- 14. M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, Composition dependent thermoelectric properties of sintered Mg2Si1-xGex (x = 0 to 1) initiated from a melt-grown polycrystalline source. Thin Solid Films., **515**, 8237–8241 (2007).
- 15. L. Na-Na, S. Ren-Bo, and D. Da-Wei, Elastic constants and thermodynamic properties of Mg₂Si_xSn_{1-x} from first-principles calculations. *Chin. Phys. B.*, **18**, 1674–1056 (2009).
- 16. H. L. Gao, T. J. Zhu, X. B. Zhao, Y. Deng, Influence of Sb doping on thermoelectric properties of Mg₂Ge materials. *Intermetallics.*, 56, 33–36 (2015).

- R. B. Songa, T. Aizawa, and J. Q. Sun, Synthesis of Mg₂Si_{1-x}Sn_x solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing. *Mater. Sci. Eng. B.*, 136, 111–117 (2007).
- S. Phewphong, M. Rittiruam, S. Kantee, and T. Seetawan, Thermal Properties of Bi Doped PbTe Simulated by Molecular Dynamics. *Integr. Ferroelectr.*, 155, 150–155 (2014).
- 19. S. Nose, A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys., 81, 511–519 (1984).
- 20. H. C. Andersen, Molecular dynamics simulation at constant pressure and/or temperature. J. Chem. Phys., 72, 2384–2393 (1980).
- 21. L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. *Phys. Rev.*, **159**, 98–103 (1967).
- 22. E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium. *Phys. Rev.*, **40**, 749–759 (1932).
- 23. K. Kawamura, and K. Hirako. Material design using personal computer. Tokyo: Shokabo; 1994.
- 24. P. M. Morse, Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. *Phys. Rev.*, **34**, 57–65 (1929).
- 25. Y. Ida, Interionic repulsive force and compressibility of ions. *Phys. Earth Planet. Interiors.*, 13, 97–104 (1976).
- 26. V. K. Zaitsev, M. I. Fedorov, I. S. Eremin, and E. A. Gurieva. In: D. M. Rowe, editor. *Thermo-electrics handbook macro to nano*. Boca Raton: CRC Press, (2006).
- J. L. Corkill, and M. L. Cohen, Structural, bonding, and electronic properties of IIA-IV antifluorite compounds. *Phys. Rev. B.*, 48, 17138 (1993).
- R. B. Song, Y. Z. Liu, and T. Aizawa, Solid State Synthesis and Thermoelectric Properties of Mg-Si-Ge System. J. Mater. Sci. Technol., 5, 618–622 (2005).
- 29. R. Zwanzig, Time-Correlation Functions and Transport Coefficients in Statistical Mechanics. Annu. Rev. Phys. Chem., 16, 67–102 (1965).
- 30. J. J. Martin, Thermal conductivity of Mg₂Si, Mg₂Ge and Mg₂Sn. J. Phys. Chem. Solids., 33, 1139–1148 (1972).

หนังสือยินยอม

ข้าพเจ้า นายมีนา ฤทธิร่วม เป็นผู้เขียนชื่อแรกในบทความเรื่อง "Predication of Thermal Conductivity of Mg₂X (X = Ge and Sn) by Molecular Dynamics" ตีพิมพ์ในวารสาร Integrated Ferroelectrics An International Journal เล่มที่ (Vol) 15 ฉบับที่ (No.) ISSUE 1 เดือนตุลาคม ปี ค.ศ. 2015 เลขหน้า (pp) 61-72 นั้น ขอยินยอมให้ นายไวรุจ อิ่มโพธิ์ ซึ่งเป็น ผู้เขียน ร่วม (co-author) ในบทความดังกล่าว เป็นผู้ขอรับเงินสนับสนุนการตีพิมพ์เผยแพร่บทความวิจัยใน วารสารระดับนานาชาติ

ลงชื่อ9	Sn		ผู้ยินยอม
(1218) JL9	Inis	01))
วันที่ 2	W. U.	2058	

INTEGRATED FERROELECTRICS	CrossMark
n na	SECTION B: THERM
	Predication of
4 Taga	100 0

SECTION B: THERMOELECTRIC MATERIALS Predication of Thermal Conductivity of Mg₂X (X = Ge and Sn) by Molecular Dynamics

DOI: 10.1080/10584587.2015.1062684
M. Rittiruam ^{ab} , A. Vora-Ud ^{ab} , W. Impho ^c & T. Seetawan ^{ab*}
pages 61-72
Publishing models and article dates explained

Received: 22 Dec 2014 Accepted: 22 May 2015 Published online: 22 Oct 2015

1	Preview
and a	Full text HTML
1	PDF
	Access Options

Alert me

http://www.tandfonline.com/doi/pdf/10.1080/10584587.2015.1062684

Integrated Ferroelectrics

Country: United Kingdom

Subject Area: Engineering | Physics and Astronomy | Materials Science

Subject Category:

Category				Qu	artile	(Q1 m	eans h	ighest	values	and Q	4 lowe	st valu	es)			
category	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Condensed Matter Physics										(**) (**)			64		0	
Electronic, Optical and Magnetic Materials						の大部					の上記		1			
Electrical and Electronic Engineering																
Control and Systems Engineering															04	
Materials Chemistry											(The second		C LOCAL	(TAN)		
Ceramics and Composites											1775.0045 + 36.1			1		

Publisher: Taylor and Francis Ltd., Publication type: Journals, ISSN: 16078489, 10584587

http://www.scimagojr.com/journalsearch.php?q=17931&tip=sid&clean=0

Integrated Ferroelectrics Impact Factor

Journal Abbreviation. INTEGR FERROELECTR Journal ISSN: 1607-8489, 1058-4587

Year	Impact Factor (IF)	Total Articles	Total Cites
2014/2015	0.357	189	790
2013	0.371	190	783
2012	0.375	191	677
2011	0.3	208	660
2010	0.264	147	644
2009	0.329	71	753
2008	0.242	159	706

http://www.bioxbio.com/if/html/INTEGR-FERROELECTR.html