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ABSTRACT 

Tetrahedrite is a non-toxic Earth-abundant mineral that has much potential as a material for 

thermoelectric, thin film and solar cell power generation. A recently discovered p-type semiconductor, 

it requires little processing to attain dimensionless figure of merit, ZT, approaching unity. 

Enhancements expect to see ZT climb above 1.0 in the near future. In this study, computer simulations 

using DV-Xα method were used to determine the electronic structure of Cu12Tr0.5Sb4S13 where Tr = Ti, 

V, Fe, Ni, Cu, Zn. It was found as the electrical conductivity increased, the band gap slightly 

decreased. Also, Ti and V additions make an n-type semimetal while iron stabilizes the tetrahedrite 
phase field.  
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INTRODUCTION 
 

In the past, thermoelectric generators (TEGs) 

have been used only in special applications such as 

NASA spacecraft. Toxicity and high cost of 

materials are the two main factors limiting TEGs 

widespread use in commercial applications.   

A recently re-discovered material, tetrahedrite, 

has changed the situation dramatically. A naturally 

occurring p-type semiconductor with a high 
dimensionless figure of merit, tetrahedrite is a    

non-toxic, abundant sulfosalt that is mined all across 

the Earth, primarily when silver in present in the 

ore. 

In a 1950 study by Telkes at MIT, she found 

that some tetrahedrites had low resistivity of 10 

μΩm and notable Seebeck coefficient of 200 

μV/K [1]. After receiving little notice for over 60 

years, tetrahedrite was reinvestigated by Suekuni. 

In 2012, he reported that stoichiometric and Ni 

doped tetrahedrite could attain dimensionless 
figure of merit, ZT, of 0.56 and 0.72 [2]. In 2013, 

Lu and Morelli produced a value of 0.9 ZT using 

raw tetrahedrite ore and doping with Zn. 

Furthermore, they report that high ZT values are 

maintained over a wide range of impurities in the 

ore [3]. Interestingly, they have not reported the 

exact values of the impurities in their ore, but 

have filed for a patent (WO2014008414A1). Lu 
and Morelli’s findings are an important 

development because it takes us one step closer 

to making economically feasible non-toxic mass-

produced thermoelectric devices for general use. 

This study is the beginning of a larger work to 

create an environmentally friendly TGE that can 

be mass produced at a low cost for the benefit of 

society and our planet. 

The structure of tetrahedrite was proposed 

by Pauling and Neuman in 1934 with much 

controversy. Some 30 years later the structure 

was proven correct by Wuensch [4]. A 1983 
paper by Johnson and Jeanloz showed that the 

stoichiometric formula is too ionically 

unbalanced to exist in nature. By analyzing 139 

samples, they found tetrahedrite in a phase field 

bounded by Cu12Sb4S13, Cu14Sb4S13 and 

Cu12Sb4.67S13 [5]. The necessity of a small 

amount of iron needed to stabilize the phase field 

has been argued by Tatsuka and Morimoto, else 

decomposition into several other phases occurs, 

namely famatinite and digenite with antimony 

coming out of solution [6] 
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Tetrahedrite has space group 43I m . It is 

formed by rotoinversion of four minimal cubic 

cells of Cu3SbS3.25. See Fig. 1. When the unit cell 

Cu12Sb4S13 is doubled over, it forms a body-

centered cubic (BCC) with an S(2) at the center 

octahedrally bonded by six Cu(2) atoms. Each of 
these Cu(2) atoms are bonded to two S(1) atoms 

in a plane referred to as ‘spinners’. The Cu(2), 

located near the center of this triangle, is kept in 

check by two antimony atoms in a high 

amplitude-low frequency motion which disrupts 

the phonon transfer of heat. Combined with holes 

in the structure’s geometry, tetrahedrite has very 

low thermal conductivity at 1.2 W/mK. Low 

thermal conductivity is desirable for good 

thermoelectric properties. 

 

 
 

Fig. 1. Cu24Sb8S26 cluster model of 95 atoms.[2] 

 
Including only a few of the many atoms that 

can substitute into the formula, the original unit 

cell that was proposed by Pauling and Neuman is 

written as (Cu, Ag)6(Cu, Fe,Zn)6(Sb,As)4S13. Note 

that iron and/or zinc are always found in natural 

tetrahedrite. With as many formulas as there are 

authors on the subject, Wuensch’s formula 
IVM(1)6

IIIM(2)6[
IIIXIVY3]4

VIZ is perhaps the most 
quoted. M(1) is predominately Cu+ but also 

includes Fe, Zn, Ni, Ti, V, Cr, Mn, Co, Hg, Cd 

and Pb tetrahedrally bonded to four sulfur atoms. 

M(2) is Cu or Ag triangularly bonded to three 

sulfurs. X is Sb and As with some Bi possible 

bonded to three Y atoms of S with some Se or Te 

possible. Z is sulfur octahedrally bonded to Cu and Ag.  
TRG TET SM

6 2/3 1/3 6 4 13(Cu,Ag) [Cu (Fe,Zn,Cd,Hg,Pb) ] (Sb,As,Bi) (S,Se)

 is the formula by Sacks and Loucks; it is 

helpfully descriptive. 

 

 

 

 

 

MATERIALS AND METHODS 
Computational Method 

2.1 DV-Xα Method 

The discrete variational Xα method calculates 

molecular orbitals assuming the Hartree-Fock-Slater 

(HFS) approximation [11]. Starting with the 

molecular Hamiltonian, ˆ ˆ ˆ ˆ ˆ ˆ
e N ee eN NNH T T V V V      ,and 

invoking the Born-Oppenheimer approximation 

where the nuclei are in fixed positions, the 

nuclear kinetic energy ˆ
NT  goes to zero while the 

nuclear potential energy ˆ
NNV stays constant. The 

resulting electronic Hamiltonian consists of an 

electronic kinetic energy term ˆ
eT  and three 

potential energy terms ˆ ˆ. eV H solves the time-

independent Schrödinger equation, 

     Ĥ , E ,e e e er R R r R                    (1) 

where r  is the electron position vector and R  is 

the nuclear position vector.  

 
In order to satisfy the Pauli exclusion principle, 

the Hartree-Fock wave function 
HF must 

follow the anti-symmetry law. This is done using 

a Slater determinate, 

 
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  

  

  

 

(2) 

where  i iX  is the thi orbital at the thi electron 

position and 1

!N

 is a normalizing factor. 

     ˆˆ ˆ ˆE H h J , K ,HF HF HF

e i i j i j          (3) 

where  ĥ i  is the one electron operator,  Ĵ ,i j  is 

the coulomb potential and  K̂ ,i j is the exchange 

term arising from the Pauli exclusion principle. 

To find the ground state, minimize EHF using 
Lagrange multipliers. It is found that, 

         1 1 1 1 1
ˆ ˆ ˆh X J X K X X Xj i j j i j i j ij j  
     
 

   (4) 

The three operators on the left side of equation 4 

are combined to form the Fock operator,  1F̂ X , 

and the orthonormal matrix ij  is diagonalized. 

This simplifies to, 

     1 1 1
ˆ

i i iF X X X                            (5) 
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Equation (5) is an eigenvalue problem where 
i  

is the energy eigenvalue associated with orbital 
i . 

Hartree-Fock method is an approximate 

solution to the wave equation for a many-body 

system in a stationary state such as a solid. Also 

called the self-consistent field (SCF) method, it 

uses Slater’s Xα potential 

   
1/3

3
3

8
xcV r r 



 
   

 

                            (6) 

where  xcV r is the exchange-correlation 

potential at position r, α is 0.7 - a parameter 

found experimentally and  r is the electron 

density at position r. 

The molecular electronic density is given by 

     
2

j j j
j j

r r f r                    (7) 

where 
jf  is the occupation number of the thj  

molecular orbital. The solution to the Schrödinger 

equation (1) is given by 

     j ij ir i C X r                            (8) 

where 
ijC is a weighting coefficient and  i r  is 

the symmetrized linear combination of atomic 

orbitals (LCAO) at position r. 

     , , il v

i vm nlm vr v l m W r               (9) 

where v is the atom, l is the orbital quantum 

number, m is the magnetic quantum number and 

vr  is the coordinate referred to the atom v, which 

can be written as 

     v v

nlm nl lmr R r Y r                         (10) 

where  lmY r  is taken to be the real spherical 

harmonics and ( )v

nlR r  is the radial part of the 

atomic orbital generated by numerical 

computation of the atomic problem. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 2. Simplified flow-chart of HFS approximation. 

 

DV-Xα uses the Roothaan-Hall approximation, 

1

k

i iC 





                                           (11) 

where Cμi is a weighting factor and   is an 

atomic orbital basis function summed over each 

spin orbital i. Substituting  χi into the Hartree-

Fock equation, multiply by 
1(x )

 and 

integrating, we arrive at, 

1 1 1 1 1 1 1( ) ( ) ( ) ε (x ) ( )i i iC dx x f x x C dx x 

 

 

         
  (12) 

Using the matrix element notation  

1 1 1 1( ) ( ) ( )F dx x f x x

      and 
1 1 1(x ) ( )S dx x

      
the Hartree-Fock equation can be written in 

matrix form as 

εi i iF C S C   
 

                       (13) 

Or simply as:        FC = SCε                            (14) 

Note that to avoid integrals as matrix 

elements, self-consistent charge (SCC) can 

replace SCF for bulk material. 

2.2 Computational Details 
Classical tetrahedrite Cu12Sb4S13 was run by 

DV-Xα method using the cluster model 

Cu24Sb8S26 which consists of 95 atoms in a body-

centered cubic (BCC) structure. The structure is 

as follows:  6 internal, 24 face, 24 edge copper 

atoms; 8 internal antimony atoms; and, 25 

internal, 8 corner sulfur atoms. This cluster model 

Cluster Model Atom 

Atomic symmetry  Atomic charge 

Self-consistent charge 

     i ir i a r   

LCAO 

     j i ir i C r 

 

Hartree-Fock-slater by 

Fortran & DOS system 

FC = SC 

1 1 1(x ) ( )S dx x

    
1 1 1 1( ) ( ) ( )F dx x f x x

      
Spin Spin 

Density of sates Energy level 
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has 26 td symmetry.  Because this cluster was too 

large to run on a desktop computer, the 8 corner 

S(2) and 24 neighboring Cu(2) copper atoms 

were removed from the cluster giving us 63 

atoms, all the while 26 td symmetry was 

maintained. This cluster ran smoothly. A band 
gap of 1.50 eV was calculated which is nicely 

between Bullett [7] and Ferreira [8] 1.2 and 1.24 

eV, respectively, and Embden [9] and Johnson 

[5] 1.7 and 1.72 eV, respectively. 

Since Cu12Sb4S13 does not exist in nature [5] 

due to its lack of ionic balance, we chose to run 

Cu12Tr0.5Sb4S13, where Tr = Ti, V, Fe, Ni, Cu, Zn 

are in their 2+ ionic state. Another option would 

have been to run Cu11TrSb4S13. Both of these 

formulas are closer to natural tetrahedrite. 

The Tr atom was added to the center of the 

yz-plane at ±x where x=a, half the lattice 
parameter. This gave us a cluster model of 65 

atoms with 16 S4 symmetry. 

 
 
Fig 3. Placement of the Tr atom at (+/-x, y, z). 

Calculation by Coulomb’s law gives the position 

a charge of -0.5V. Density of state from 

Wuensch, 1964. 

 

Placement of the Tr (2+) atom at the said 

position is justified for two reasons. First, there is 

a naturally occurring hole at this position with the 

nearest atom being sulfur at 2.234 Å – the same 

distance as the shortest bond length in 

tetrahedrite. Second, the area has an electric field 
of -0.5 V as shown in fig. 3. 

As for our choice of Tr atoms, they were 

chosen for the following reasons. Fe and/or Zn 

are always found in natural tetrahedrite. Zn and 

Ni have been used as dopants by Suekuni and 

others. Ti and V are impurities found in the 

tetrahedrite in Thailand, and are thus important 

for future work. 

Lattice parameters used in our calculation 

come from Wuensch, 1964. The sensitivity CVJ 

was set at 0.10000 for all six Tr runs. Additionally, 

an extra cluster model of Cu12Tr0.5Sb4S13 Tr = Cu 
was run at higher sensitivity CVJ 0.00100. No 

difference in results were detected.  

RESULTS AND DISCUSSION 

 

Computations of energy level, density of 

states and internal energy were obtained for the 

six transition metals. It was seen that as Tr 

increased in atomic number and the 3d orbital 

filled up and therefore electrical conductivity 

increased, the band gap decreased slightly. See 

fig. 4. 

 

 
 

Fig 4. Band gaps with Cu 3d and Tr 3d electron 

shells where Tr = Ti, V, Fe, Ni, Cu, Zn 

 
As can be seen, the transition metals are 

potentially tunable and only the right 

combination of elements are needed to improve 

performance. 

Seebeck coefficients for Cu12Tr0.5Sb4S13 

were calculated by, 

2 2

F

3

3 2

Bk T
S r

eE

  
  

 
                                  (15) 

Where kB is Boltzmann’s constant, e is absolute 

value of the charge carrier, T is absolute 

temperature, 
FE  is energy at the Fermi level, and 

r is the number of molecular orbitals.  

 

Table 1. EF and Seebeck coefficient for 

Cu12Tr0.5Sb4S13. FE obtained from dd7 file. 

Tr Ti V Fe Ni Cu Zn 

EF 0.64 0.17 -0.21 -0.52 -2.26 -2.64 

S 155 584 496 191 34 38 

 

For positive Fermi energies, 
FE , Table 1 

shows that Ti and V additions to tetrahedrite 

create n-type thermoelectric materials. This is the 

first known reporting of an n-type tetrahedrite 

thermoelectric material.  
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The goal is a high dimensionless figure of 

merit, ZT. 
2S T

ZT



                                               (16) 

where σ is electrical conductivity, S is Seebeck 

coefficient, T is absolute temperature, and κ is 

thermal conductivity. Due to the interdependence 

of σ, S and κ, ZT must take into account all 

factors. For instance, filling of the 3d electron 

shell increases σ, but also increases κ. Most 

researchers have focused on reducing the thermal 

conductivity while attempting to keep electrical 

conductivity and Seebeck coefficient high. 

 
Fig 5. Total density of states for the six substituted 

Tr atoms. 

 

The peaks of Cu, Zn and Ni in fig. 5 give 

these three elements good potential for increasing 

ZT. Meanwhile, Fe, Ti and V are spread across 

the Fermi level making them less ideal. But these 

3d orbitals are tunable so it is hoped that the 

tetrahedrite in Thailand has more zinc content 

than iron allowing more flexibility in improving 

ZT in future experimental trials.  
In table 2, bond energies show that iron 

stabilizes the tetrahedrite phase field. The 

stabilizing effect is due to iron’s ability to switch 

between ionic 2+ high spin (3d6) states and 3+ 

low spin (3d5) states. For S(2)-Cu(2) bonds with 

iron present, the result was three bonds at 0.92 

units, while the same bond with other transition 

metals resulted in three different energies. With 

Fe, Cu(2)-S(1) had six stable bonds at 1.62 to 

1.83, yet the other elements showed 16 weaker 

bonds in an unstable scattering of energy. 
Therefore, it is noted that iron has a stabilizing 

effect on all six bonds when added to the 

structure. This result is supported by Tatsuka 

where he found that tetrahedrite without iron 

decomposes into famatinite, digenite, and 

antimony [6]. 

 

Table 2. Atomic bond, bond length, and associated 

bond energies for Tr = Fe and the other five 

substitute elements with Ni used for the average. Ti, 

V, Cu and Zn results were nearly identical to Ni. 
Bond Å Fe Ti, V, Ni, Cu, Zn 

S2-Cu2 2.23 (3)0.92                    0.64, 0.82, 1.19 

S2-Cu1 2.27 1.85, 2.02, 2.03 (4) 0.5, 1.0, (2) 1.5 

Cu2-S1 2.34 (2) 1.62, (4) 1.8 (16) 0.39 -1.38,0.67 

S1-Sb 2.45 1.53, (2) 1.86   (6) 0.45, 1.18, (6)1.37 

S1-Tr 2.23 1.81 0.39, 1.32 

Cu1-Tr 2.51 (2) 0.9 (3) 0.17, 0.46, 0.64 

 

Furthermore, results of an MXDOTRO 

simulation of tetrahedrite by Rittiruam [12] are in 

agreement with Tatsuka. It is predicted that a 

future MXDORTO simulation of tetrahedrite 

with a small addition of iron will show a 

tetrahedrite with a thermodymanically more 
stable structure compared to tetrahedrite without 

iron. 

 

CONCLUSION 

 

It was found that as the electrical 

conductivity increased, the band gap slightly 
decreased. Ti and V in tetrahedrite can make      

n-type semimetals while Fe, Ni and Zn make     

p-type. Furthermore, the transition metals should 

be tunable for higher ZT values while iron 

stabilizes the tetrahedrite phase field.  
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