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Abstract

The concepts of my-c.-boundary and exterior sets in biminimal
structure spaces were introduced, which found some characterizations

and several properties of those sets.

1. Introduction

In general topology [7], the boundary and exterior of a subset 4 of a
topological space X are the set of points which can be approached both from
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the closure of 4 and from the closure of the outside of 4 and the union of all
open sets of X which are disjoint from A, respectively. They are the
fundamental properties in topology which be more advantageous for study
the concepts of topology. In 2000, Popa and Noiri [11] introduced the
concepts of minimal structure spaces which included x -open set and my -

closed set, specially, some characterizations and properties of those sets were
found. Later, the bitopological spaces and biminimal structure spaces were
introduced by Kelly [5] and then Boonpok [1], respectively. Moreover,

Boonpok [1] obtained some fundamental properties of m&mg( -closed sets

and m}(mg( -open sets in biminimal structure space in 2010. Next, Boonpok

[2] also introduced some notion of M-continuous functions on biminimal
structure spaces and then obtained some characterizations and several
properties among them. The notion of boundary and exterior sets were
introduced by Sompong [12, 13], which obtained some characterizations and
fundamental properties of such sets. In 2012, Carpintero et al. [4] studied
preopen sets in biminimal spaces and gave some notions of among them. In
2013, Boonpok et al. [3] introduce the notion of MJ(:{ J) -continuous functions
in biminimal structure spaces. Furthermore, they also obtain some new

characterizations and several fundamental properties of Mg;j ) -continuous

functions. In this study, the authors introduce the notions of (i, j)-my-o-

boundary and (i, j)-my -o -exterior sets which obtain some fundamental

properties of those sets in biminimal structure spaces.
2. Preliminaries

Definition 2.1 [10]. A subfamily my of the power set P(X) of a

nonempty set X is called a minimal structure (briefly m-structure) on X if

Demy and X € my. Each member of m x 1s said to be my -open and

the complement of a my -open set is said to be m x -closed.

Definition 2.2 [6]. Let X be a nonempty set and my be an m-structure

(i, j)-my - -boundary and Exterior Sets ... 99
on X. For a subset 4 of X, the my -closure of A and my -interior of A are
defined as follows:

(1) myCl(A)={F: Ac F, X\F € my},
Q) myInt(A) =U{U : U < 4, U € my}.

Lemma 2.3 [6]. Let X be a nonempty set and my be an m-structure on

X. For subsets A and B of X, the following hold.

(1) myCI(X\A) = X\myInt(4) and myInt(X\A) = X\myCI(4),

) If (X\A) € my, then myCl(4) = A and if A € my, then myInt(A)
= A,

(3) myCl(B) =3, myCl(X)=X, myInt(D)=3 and myIn(X)
=X,

(@) If A< B, then myCl(A) < myCIl(B) and myInt(A) < myInt(B),

(5) A < myCI(4) and myInt(4) C A,

(6) myCl(myCI(A)) = myCI(A) and my Int(my Int(4)) = myInt(A).

1 2 .
Definition 2.4 [3]. Let X be a nonempty set and mymjy be minimal

structures on X. The triple (X, mly, m%) is called a bi m-space (briefly

bispace) or biminimal structure space (briefly bimspace).

Let (X, mY, m%) be a biminimal structure space and 4 be a subset of
X. The my -closure of 4 and the my -interior of 4 with respect to m} are
denoted by m’ CI(A) and m'y Int(A), respectively, for i, j =1, 2 and i # J.

Definition 2.5 [2]. A subset 4 of a biminimal structure space
(X, mY, m%) is said to be

(1) (i, j)-my-regular-open if A = mfylnt(mg(Cl(A)), fori, j=1or2

and i # J,
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) (i, j)-my -semi-open if AcC mB(Cl(mg(Int(A)), for i, j=1or2
and i # j,

(3) (i, j)-my-preopen if A < m&lnt(mg(Cl(A)), for i, j =1 or2and
i# ],

4) (G, j)-my-a-open if 4 c m&lnt(mj.(Cl(mg(Int(A))), for i, j =1
or2and i # j,

(5) (i, j)-my -B-open if A < miyCl(mi Int(myCI(A4))), for i, j =1 or
2and i # j.

Lemma 2.6 [2]. Let (X, mg(, m}"() be an m-space and A be a subset of
X. Then

(1) A is (i, j)-my -regular-closed if and only if A mE(Cl(m{(Int(A)),

2)4is (i, j)-my -semi-closed if and only if mfylnt(mg(Cl(A)) c 4,

(3) A4 is (i, j)-my-preclosed if and only if ms.(Cl(mg(Int(A)) c 4,

@) A is (i, j)-my-o-closed if and only if mG(Cl(mg(Int(mﬂ(Cl(A)))
c 4,

(5) 4 is (i, j)-my-B-closed if and only if m'yInt(m}Cl(m'y Int(A4)))
c A.

Lemma 2.7 [3]. Let (X, m}(, mg() be a biminimal structure space and
{4y : k € X'} be afamily of subsets of X.

() If Ay is (i, j)-my-a-open for each k € X, then Uke.}tf Ay s
(i, j)-my -a-open.
() If A4 is (i, j)-my-o-closed for each k € X, then ﬂkex Ay s

(i, j)-my -a-closed.

(i, j)-my -0 -boundary and Exterior Sets ... 101

Definition 2.8 [3]. Let (X, ml\z, mg() be a biminimal structure space

and A4 be a subset of X. Then, m’)j( -a.-closure of A and the m%-a-interior of

A are defined as follows:
(1) mSj(Clﬂ(A) =(|{F:A¢ F,Fis(, J)-my -a-closed},
@) myInt g (4) =\ J{U :U < 4, U is (i, j)-mx-0-open}.

Lemma 2.9 [3]. Let (X, mY, m%) be a biminimal structure space and
A be a subset of X. The following properties hold.

1) mg(Clﬂ(A) is (i, j)-my -a.-closed,

) m;j(lnt o (A4) is (i, j)-my -a-open,

(3) A is (i, j)-my-a-closed if and only if mgj(Clﬂ (4) = 4,

(@) A is (i, j)-my -a-open if and only if m%Int g (A4) = A.

Lemma 2.10 [3]. Let (X, my, m%) be a biminimal structure space and
A be a subset of X,

(1) mi Clyg (X\A) = X\m¥ Int oy (4),
@) mi Int g (X\4) = X\m¥Cl 7 (4).
3. (i, j)-my -a.-boundary Sets

In this section, we define the new definitions and construct their

properties of (i, j)-my -a -boundary sets in biminimal structure spaces.

Definition 3.1. Let (X, m}(, m%) be a biminimal structure space, 4 be a
subset of X and x € X. Then x is called (i, j)-my - -boundary point of A if

x€ mi{,Cl_d 4)N mE{,CI_Q((X\A). We denote that the set of all (i, j)-my-

a-boundary points of 4 by m%Bdr_d (A), where i, j =1,2 and i # j.
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From Definition 3.1, m% Bdry (4) = miCly (4)N mY Cly (X\4).
Example 3.2. Let X = {I, 2, 3}. Define m-structures m} and m% on
the biminimal structure space X as follows: m} = {@, {1, 2}, X} and m% =
{@, {2,3}, X}. By Definition 3.1, we obtain that mg(Bdrd ({3}) =
mj{,Cl ~{3HN m’){,C‘l o (X\{3}). Consequently, m!?Bdr,,({3}) = {3} and

my Bdryy ((3}) = X.

Lemma 3.3, Let (X, ml\z, m)z() be a biminimal structure space and A be
a subset of X. Then, mgj(Bdrd (4) = m‘l{,Bdrd(X\A), where i, j =1, 2 and
i .

Proof. For i, j=1,2 and i# j. By Definition 3.1, m} Bdr, (4) =
mf{,‘Cld(A) N m% Clay (X\A) and also mY] Bdry (X\4) = m¥ Cl 7 (X\4) N

m%g[ﬂ,()(\()(\@) = m;'f(',Clﬂ(X\A) N m%Cld(A). Consequently,

m% Balrgy (4) = mY Bary (X\A),

where i, j=1,2 and i # ;. O

Lemma 3.4. Let (X, m}\z, mg() be a biminimal structure space, A be a

subset of X. Then, for any i, j =1,2 and i # J» the following statements
hold:

(1) m% Bdrr (A) = m¥yClyy (A)\m Int 5y (A4).
(2) MY Bdrgy (A) N mi Int oy (4) = @.
(3) MY Bdray (4) N\ mi Int y (X\4) = @.

(4) mYCly(4) = mY By (4) U mY, Int o (A).

(i, j)-my -o -boundary and Exterior Sets ... 103
5 X = mgj(lntd (AU m?{Bdr_ﬂ (4U mgj(lntd (X\A) is a pairwise
disjoint union.

Proof. Assume that (X, mg(, mg() is a biminimal structure space and 4

is a subset of X.
(1) m, Bdr gy (4) = myCloy (4) N m% Clay (X\4)
= m Clag (4) N (X \m¥y Int o9 (4))
= m},Clly (A)\m Int o (4).
(2) By (1), we have that m’, Bdras (A) N mY Int o (4) = @.

(3) By Lemma 3.3 and (2), we have mK,Bdrd(A) n mj{,]ntﬁ(X\A) =

m) Baray (X\A) \ m¥ Int o (X\A) = @.

(4) By (1), it follows that

(mf{,Clw (A)\ msj([ntd (A) U m% Int o (4)

7 msj(Bdrd (4uU mgj(lntd (4)

Il

m Cly (A).

(5) mi Int gy (A) U mY, Badr o (A) U mInt oy (X \A)

mClloy (A) U mY Int o (X\A)

ml,Cly (4) U (X\m% Cly (4))

=X.

By (2) and (3), we obtain that mg}Bdrd(A)ﬂmg(Intd(A)=® and

mgj(Bdrd(A)ﬂ m% Int g (X\A) = @. In order to complete the proof, we

need to show that mgj(lntd(A)ﬂm')J(Intﬂ(X\A)=®. As a result of
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mXIntd c 4 and m Intd (X\4) c x\4. Accordingly,
m;j([nt‘q{(/!) N m Intﬂ(X\A) cAN(X\4) = 2.

Therefore, X = mgj{lnt o (A) U m? Bdrd (AU m" Intﬂ (X\4) is a pairwise
disjoint union. The proof is completed. O

Example 3.5. Let X = {1, 2, 3}. Define m-structures m}\z and mfy on the
biminimal structure space X as follows: my = (@, {1}, {2, 3}, X} and m} =
{2, {2}, {1, 3}, X}

We have that m&zBdrﬂ ({2, 3}) = @, which is a subset of {2, 3} and
{1}. But mg(lerd({Z, 3}) = {1, 3} is not a subset of {2, 3} or {1}. Thus, we
need some conditions to complete the proof that m%Bdrd(A) c A4 and

mY, Bdroy (4) = X\A.

Theorem 3.6. Ler (X, mY, m% ) be a biminimal Structure space, A be a
subset of X. Then, Jorany i, j=1,2 and i = J» we obtain that

(I)A is (i, j)-my-a-closed if and only if m Bdr_‘z{(A) c A4,

(2)A is (i, j)-my -a-open if and only if m¥ Bdrw«(A) c X\4.

i 105
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= AN (X\4)

=0.
Therefore, m XBdrﬂ(A) c A
\A4
(<) Let m)J(Bdrd (4) be a subset of 4. Then, m" Bdrﬂ(A)ﬂ (X\4)
= d
=@ Since (X\4)c m) % Clay (X\4), m* Clﬂ(A) N(X\4)=49, an
finally, m XCI (4) < 4. On the other hand, 4 ¢ m U Cly(A). 1t follows

that m% U Cly(A) = A. Moreover, A is (i, j)-my -a-closed.

A) = A
(2) (=) Assume that 4 is (i, j)-my-o-open. Then, m’ Yty (4) =

Let us consider the following:

m) Balryy (4) N A = (Y Clg (4) N my Clyg (X\A)) N 4
= AN mYCly (X \4)
= AN (X\mInt g7 (A))

= AN(X\A4)

=(.

Therefore, m} Bdrﬂ (4) c X\4

(1) (=) Assume that 4 is (i, j)-m x -a.-closed. That s, mg}CI 2 (4)= A miInty(4). On the contrary, m’)J(Intd(A) c A. Consequently,
¥ :
Next, we want to show that 'y Bdrey (A)N (X\4) = @. By Definition 3. 1, H

m?;'lnt,g{(/l) = 4. Lastly, 4 is (i, j)-mx -a-open.
we have

“ From Example 3.5, we can see that m Bdrﬂ(A) are not necessary to be
mj{(Bdr,y(A) N(X\4) = (m Cl“/(A) N m’ CIW(X\A)) N (X\4)
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. For instance, m¥ Bary ({2, 3)) = @, but m¥ Bdr g (12, 3)) = {1, 3}. All
conditions to approach our purpose are found in the next theorem,

Theorem 3.7. Lt (X, mjy, m,z\z) be a biminimal Structure space, A be a
subset of X. Then, mf{,Bdrd (4) =D ifand only if 4 is (i, j)-my -o-closed

and (i, j)-my -a-open where Lj=12andi# |

Proof. Let (X, m}, m%) be a biminimal structure space and 4 be a
subset of X,

(=) Assume that m%Bdrd (4)=2. Thus, m%Bdrd (A)c 4 and
mY Bdry (4) = X\4 By Theorem 3.6, 4 is (i, j)-my-a-closed and
(i, j)-my -a-open.

(<) Assume that 4 is (is j)-my -o-closed and (i, j)-my -a-open. By
Theorem 3.6, we also have szdr‘z; (4) < 4 and mj{;Bdr_d(A) < (X\4).
Asa ?esult, mgBdr_d (4) € AN (X\4), and also mf{,Bdr_“/ (4)=2. O

For the next section, we will introduce the concepts of (i, j)-my -a -

exterior sets in biminimal structure  space which contain some
characterizations and severa] fundamental properties of those sets.

4. (i, j)-my - -exterior Sets

Definition 4.1. Let (X, mfy, m,zy) be a biminimal structure space, 4 be a
subset of X and x € X. Then, x is called (;, J)my -0 -exterior point of 4 if
X e mf{,lntﬂ (X\4). We denote that the set of all (i, j)-my -o -exterior point
of 4 by szxtﬂ(A), where i, j =1, 2 and ; = J.

According to Definition 4.1, m%Extd (4) can be rewritten ag

X\mY,Cly (4).

X t .
(’ .])

the biminimal structure space X as follows: my = {3, {1, 3}, {2, 3}, X} and
mk = {2, {1}, 2} {1, 3} 2.3}, X},
We have that m¥? Ext 4 ({3}) = X\m¥Cly({3}) = X\X = @ and
m3 Ext o ({3}) = X\m¥ Clor ({3)) = X\3} = {1, 2}.

E )r . . . . .
subset o . ”16)1, or an l, - l 2 ana 1 # the ()”() n ‘Stalenlenls

hold:

(1) mY Extzy(A)N A =2.
2) mYExty (@) = X.

(3) mi Bty (X) = @

(4) m Ext g (X \m} Ext o (A)) = m% Ext 7 (4).
Proof. Assume that (X, m), m%) is a biminimal structure space and 4
roof. , My,

is a subset of X.
“ y X\A.
(1) For the reason that 4 < minClﬂ(A), then X\m%Cly(4)
is m = .
Furthermore, (X\mg'(Cld (A))N A< @. Thatis m% Exty(A)N A4
i, . g
(2) Since m’ Cly(P)=D and by Definition 4.1, we obtain tha
X
mY, Ext (D) = X\& = X.

. = t have
(3) Similar to (2) and the fact that m%Cly(X)= X, we then

myExtyy (X) = X\X = @.
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(4) By Definition 4.1,

mXExt_,Z( (X\mj(Extd (A)) m Extﬂ (m Clﬁy (A))

and

mXExtd(A) X\m! Cl‘d(m Cly(4)) = m Extd(m  Cly (4)).
Then, m)j(Extd(X\msj(Extd(A)) mY, Ext oy (A). O

Theorem 4.4. Let (X, mYy, m%) be a biminimal structure space and A,
B be subsets of X with A < B. Then, m" Extﬂ(B) c mh Ext_d(A) where
I, j=L2andi# j.

Proof. Assume that (X, mly, mg() is a biminimal structure space and 4,
B are subsets of X, 4 < B. Since mgj(Cl‘d(A) c ml 5 Clag(B), we now have
X\m’)j(Cld (B)c X\m! CIM(A) It follows that Extd (B)c m)J(Extﬂ (4)

forany i, j =1,2 and i # j. O

Example 4.5. Let X = {1, 2, 3}. Define m-structures mYy and m% on the

biminimal structure space X as follows: mYy = {@, {1}, {2, 3}, X Yand m% =

@, 2}, 11, 3}, X).

We can see that m ¥ Ext ({1, 2}) < m* ¢ Ext ({1} and m¥P Ext ({1, 2))
< m¥ Ext 5 ({1}), which {1} is a subset of {I, 2}. Moreover, we also obtain
that mZExt,({3}) = {1} # X\{3}, m¥ Extoy({3)) = {2} # X\(3}, m\¢Ext,,
(X\(3}) = @ # {3} and m¥Exty(X\(3) =@ = {3}. Therefore, we need

some conditions to complete those statements.

Theorem 4.6. Let (X, mk, mg() be a biminimal structure space and A

be a subset of X. Then, for any i, j =1, 2 and i # j, the following statements

$ (i, j)-my -o.-boundary and Exterior Sets ...
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are true.

(1) A is (i, j)-myx-o.-closed if and only if mXExtz/(A) X\A.

@) A is (i, j)-my-o-open if and only if m'g(Extd (X\4) = 4.

Proof. Assume that (X, m}(, mg() is a biminimal structure space and 4
is a subset of X.

(1) (=) Suppose that 4 is (i, j)-my-o -closed. Then, m XExtd(A) =
X\mg(Clﬂ((A) = X\4.

(«) Suppose that m XExt o (4)=X\A. It means that X \m  Cly(A) =

X\A. Since 4 < m' Cld(A) m! Y Clgy(4) = A. Finally, 4is (i, j)-my-o-
closed.
(2) (=) Suppose that 4 is (i, j)-my -a.-open. Then, X\A4 is (i, j)-mx-

a-closed. Using (1), m? Extd(X\A) X\(X\4) =
{&=) Suppose that mY% U Ext 7 (X\A4) = A. We have

A=X\m} Clﬂ(X\A) X\(X\m Int o (A)) = m? Intd(A)

O
Hence, 4 is (i, j)-my -o.-open.

From Example 3.5, we have m'ZExtq ({1, 2})U m\¢Ext 0 ({3}) = {1} #
m2Ext ({1, 2N (3}), whereas m¥Extg ({1})Um PExty((2,3) =X =
mf Ext g ({1} N {2, 3)). So,

Extﬂ,(A)Um  Extn(B) and m Extd(AﬂB)

are not necessary to be equal. In next theorem, we will give some condition

for those sets to be equal. :,
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Theor - b, m?
em 4.7. Let (X, my, m%) be a biminimal Structure space, A, B

be subsets of X. Then, Jorany i, j =1,2 and i » J» we have

N , ,
(1) myExty (AU B) m% Ext 7 (4) N m% Ext (B),

(2) m§Exty(4)U m% Ext 7 (B) < m% Ext 7 (4 B),

() if 4 and B are (i, J)my -o-closed, then

g " 2
My Extog (A)U m Ext o (B) = m Ext oy (4 N B).

Proof. Assume that (X, m! . m2) ;
» My, my) is a biminimal structy
are subsets of X, e
D s
(1) Since Ac AUB and B c AU B, by Theorem 4.4, ,mg}Extﬂ

(AU B) < m! / /
) € mYExtz(A4) and m'% Ext 7 (4 B) < 'mY Ext 4 (B). Therefore

i y y
My Ext oy (AU B) mYExt 7 (4) N m% Ext 4 (B).

(2) By using Theorem 4.4 and the factthat AN B < 4 and 4 NBcB
we then have m}’( .

" ;
Ext gy (4) c m% Ext (AN B) and m% Ext 5y (B) < m%Extﬂ

AN B). v 4 4
(AN B). Lastly, My Extor (A)U m% Ext 5y (B) < m% Ext 7 (A B).

(3) Assume that 4 and B are (A))

-my -a-closed. Therefore, 4 B is
also (i, f)

-mx -0~closed. By Theorem 4.6, mj{,Extﬂ (ANB)=x\(4N B)

= (XN U (X\B) = mY Ex , (4) U mY, Ext oy (B). o
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