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Abstract

The concepts of my-a-boundary and exterior sets in biminimal

structure spaces were introduced, which found some characterizations

and several properties ofthose sets.

1. Intioduction

In general topology [7], the boundary and exterior of a subset I
topological space x are the set of points which can be approached qoth
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the closure oi,l and from the closure of the outsid e of A andthe union of all
open sets of x which are disjoint from A, respectively. They are the
fundamental properties in toporogy which be more advantageous for study
the concepts of topology. In 2000, popa and Noiri [11] introduced the
concepts of minimal structure spaces which included my-open set and my -
closed set, specially, some characterizations and properties of those sets were
found' Later, the bitopological spaces and biminimal structure spaces were
introduced by Kelly [5] and then Boonpok [l], respectively. Moreover,
Boonpok [l] obtained some fundamental properties of mtymfy -closed sets

and mlym! -open sets in biminimar structure space in 2010. Next, Boonpok

[2] also introduced some notion of M-continuous functions on biminimal
structure spaces and then obtained some characterizations and several
properties among them. The notion of boundary and exterior sets were
introduced by Sompong u2, r3), which obtained some characterizations and
fundamental properties of such sets. In 2012, carpintero et al. [4] studied
preopen sets in biminimal spaces and gave some notions of among them. In
2013, Boonpok et al. [3] introduce the notion of U$i) _"ontinuous functions
in biminimal structure spaces. Furthermore, they also obtain some new
characterizations and several fundamental properties of U$il-continuous
functions. In this study, the authors introduce the notions of (i, j)_my-a_
boundary and (i, i)-mx-a-exterior sets which obtain some fundamental
properties of those sets in biminimal structure spaces.

2. Preliminaries

Definition 2.1 [10]. A subfamily my of the power set p(X) of a
nonempty set x is called a minimar structure (briefly m-structure) on x if
A emy and X emy. Eachmember of my is said tobe my_open and
the complement of a my -open set is said tobe my _closed.

Definition 2.2 [6]. Let Xbe a nonempty set and my be an m_structure
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on X. For a subset A of X, the my -closure of A and my -interior of A are

defined as follows:

(t) myCl(A) = 0{r : A c F, X\F e my\,

(2) mylnt(A) = U{U : (J c" A, U e my\.

Lemma 2.3 [6). Let X be a nonempty set and n1y be an m-structure on

X. For subsets A and B of X, thefollowing hold:

(l) myCl(X\A) = v1**lnt(A) and mylnt(X\A) = v1*rcl(A),

(2) If (X\A) e rltx, then myCl(A) = A and if A e my, then mylnt(A)

=A'

(3) myl(A)=A, myCl(X)= X, mylnt(A)=A and mylnt(X)

=X,

(4) If A c. B, then myCl(A) s myCl(B) and mylnt(A) 
= 

mylnt(B),

(5) A s myCl(A) and mylnt(A) 
= 

,1,

(6) mslCl(mxcl(A)) = mxCl(A) and mylnt(mylnt(A)) = mxlnt(A).

Definition 2.4 l3l. Let X be a nonempty set and *1y*2y be minimal

structures on X. The triple (X, *k, *k) is called a bi m-space (briefly

bispace) or biminimal structure space (briefly bimspace).

Let (X, *k, *k) be a biminimal structure space and Abe a subset of

X. The rnx -closure of A andthe rny-interior of I with respect to m'y are

denoted ay m'*Ct(,1) and m'ylnt(,1), respectively, for i, j = 1,2 and i * j.

Definition 2.5 [2]. A subset I of a biminimal structure space

(X, *tx, *2y1 it said to be

(t) (i, )-my-regular-open if A= mklnt(mJxcl(A)), for i, j =l or2

andi+j,
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(2) (i, j)-my-semi-open if A=miyCl(mr*tnt(,1)), for i, i =l or 2

andi*j,

(3) (i, j)-my-preopen if A=m'ytnt(mt Ct(,a)), for i, i =l or2and

i+j,

(4) (i, j)-my-a-open if A=m'yt"t(mr*Cl(m'ylnt(A))), for i, i =l
or2and i * j,

(5) (i, j)-my-p-open if A e m'ycl(mrrlnt(m'yct(a))), for i, ,r = I or

2and i * j.

Lemma 2.6 l2l. Let (X, *rx, *k) be an m-space and A be a subset of

X. Then

(l) A is (i, j)-my-regular-closed if and only tf A e m'rCt(mt*trt(111,

(2) A is (i, i)-my-semi-closed if and only if m'ytnt(nr*Cl(A)) q A,

(3) Ls (i, i)-my-preclosed if and only y m'*Ct(mtrlnt(A)) c A,

(4) A is (i, )-my-a-closed if and only if m'yct(mr*Int(mkd(,q)))

CA,

(5) A is (i, j)-*x-P-closed if and only tf mftnt(mr*Cl(m'ytnt(e)))

eA.

Lemma 2.7 l3l. Let (X, *lx, *zil be a biminimal structure space and

{,14, : tr e ,tr\ be afamily of subsets of X.

(t) If Ak x (i, )-my-a-open for each k e,ff, then l)0.*A1,
(i, i)-my-a-open.

(2'1 If A1, is (i, i)-my-a-closed for each k e,f , then )0.*A1,
(i, i)-my-a-closed.
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Definition 2.8 t3l. Let (X, *1x, *k) be a biminimal structure space

and,4 be a subset ofX. Then, m'J*'u'closure of A and the muy'u'interior of

I are defined as follows:

0 mkctd($ =n{F : A c. F, F is (i, i)-my-a-closed\,

(2) m'r*Int6(l) = u {u :u c A,(J is (i, )-my-a-open}.

Lemma 2.9 t3]. Let (X, *]x, *k) be a biminimal structure space and

A be a subset of X. Thefollowing properties hold:

0) m*Cld(A) is (i, i)-my-u-closed,

() mllnts(A) is (i, j)-my-u-open,

(3) A is (i, i)-my -a-closed if and only tf m'r*Cts(11 = l,

(4) A is (i, i)-my-a-open if and only if mNlnd@) = A.

Lemma 2.10 t3]. Let (X, *lx, *2il be a biminimql structure space and

A be a subset of X,

1t1 m't*cts(x\A) = x\mitnts(,1),

e) mNlna(x\l) = x\mkctd(A).

3. (i, i)-my-ct-boundary Sets

In this section, we define the new definitions and construct their

properties of (i, i)-my -cr -boundary sets in biminimal structure spaces.

Definition 3.1. Let (X, mtx, *?y1 A" a biminimal structure space,l be a

subset ofXand x e X. Then x is called (i, i)-my-a-boundary point of A if

*. -'r*ctaU)11*kctd,6\A\ We denote that the set of all (i, i)-*x-

cr-boundarypointsofr4 Ay mlJ*Aara(l), where i, i =1,2 and i * i.
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From Definition 3. t, m'r* A drs (e) = mk Cl d U) O *,r* C t a 1X f 4.

Example 3.2. Let X = {1,2, 3}. Define rn _structures mry and *2y on

the biminimal structure spaceXas follows: *t* = 1@, {1,2\, X} and m2y =

{A, {2,3}, X}. By Definition 3.1, we obtain that m,r*Adrs({t}) =

mkcld@D fi m't*ct*@f{l}). Consequently, m\}adra(l}) = {3} and

m2ytaarr,({l}) = x.

Lemma 3.3, Let (X, *k, *2y1 t" a biminimal structure space and A be

a subset of X. Then, m'J*Adrr,(,1) = *kAara(X\A), where i, j = l, Z and
i+j.

Proof. For 1,7 =1,2 and i * j. By Definition 3.1, mtJ*Bdrr,(l)=

*t,c t * 1e1 1 *'r* c t * 1x\ l) and atso m! a drs (x \ A) = *k c t a 6 t.q n

m't*,c t, (x l(x \ A)) = .k c t r, (x \ A) i *k C I a(l ). Consequentty,

m't* ndr6 Ql) = *k adra (x \A),

where i, j =1,2 and i + j,

Lemma 3.4. Let (X, *k, *!1 O" a biminimal structure space, A be a
subset of X. Then,for any i, j =7,2 and i * j, thefollowing statements

hold:

(l) m't* B dr6 Ql) = mN ct 6 e)\m,r* tnt 6 Q{.

(2) m'r*adr6Qq)n *khtd(A = A.

(3) mu*Bdr6Q)fi *ktwar(Xt,e1= q.

1+1 m't*cts(A) = *kaaraQE)U *ktrta@).
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(5) x = mNtntr,(,1)U miaar6(A)l) *ktrtd(x\l) is a pairwise

disjoint union.

Proof. Assume that (X, *lx, *k) is a biminimal structure space and 
'4

is a subset ofX.

g) mNBdr6@) = mNoa!)I*Nct61xr,t1

= *kct a QE) | (x \mt rnt a U))

= *k ct s (,1)\m'tr Int a @).

(2) By (1), we have that mNadrr,(,1)n mNnt6Q) = A.

(3) By Lemma 3.3 and (2), we have m'r*Bdrg(,1)fi*ktnt6r(Xl,l1=

mladrs(x\A)O *kt"t6(xtt1 = g.

(4) By (l), it follows that

m't* a ar 6 Ql) U mi t n t 6 l,l) = @N c t r, (,1)\ m't* r n t r,( I ) U m't* t nt 6 Ql)

= *kctaQt).

g) mN Int 6 @) U *k ndra Qq U *k t"t d' 6\A)

= *kCt s (,1) U *lr* tnt r,(x\l)

= **ct a QE) | (x \mtt* ct a U))

-f,.

By (2) and (3), we obtain that m't*Bdrr,(A)f)m!J*Int6(l)=g and

m!*adr6(l)lm't*tnta(x\A)=6. In order to complete the proof, we

need to show that mlInt6(A)nm'J*Int6(X\A)=9. As a result of
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if and only if m'J*Adrr,(A) c X\A.

be a biminimal structure space, A be a subset

(1) (+) Assume thatA is (i, i)-my_a_closed. That is, z/*cts(A) = A.i.cl
Next, we want to show that mlBdr6(l)|(Xfl1=A. ByDefinition 3.1,
we have

A = A. Since I E *iCt61'1,), x\m't*tntau)l A = a, and then ,4 c

m't*tnta(, ). on the contrary, m'J*Int6(A) g A. Consequently,

m't* tnt g (l) = A. Lastly , A is (i, i)-m y -u-open. !

From Example 3.5, we cuul see that mlBdrg(A) are not necessary to be

*'J*tnts 
= 

A and, m,llntr,(X\A) c x\A.Accordingly,

m'r*tnt 6 (l) fr m'ilnt r, (x\A) e A A (xlAy = q.

Therefore, X = *klws(l)l) *kgaraU)tJ *ktrta6\A) is a pairwise
disjoint union. The proof is completed.

Example 3.5. Let X = {1,2, 3}. Define rz-structures mty and m! onthe
biminimal structure spaceXas follows: mty = {A,{l}, {2, 3}, X} and m! =
{@, t2}, {t, 3}, ,r}.

we have that mtlBdrr,({2, 3}) = o, which is a subset of {2, 3} and

{l}. But m}faar*,({2, 3}) = {1, 3} is not a subset of {2, 3}or {l}. Thus, we
need some conditions to complete the proof that mlBdr6(A) 

= 
A and,

m'[a.dr6Q) 
= 

X\A.

fheorem 3.6. Let (X, *r, *!1 O" a biminimol structure space, A be a
subset ofX. Then,for any i, j = 1,2 and i * j, we obtain that

(i, i)-my-a-boundary and Exterior Sets "'

= Afr(X\A)

-4.

Therefore, .'!naraQl.) e ,,1.

(e) Let m'r*adraQl) be a subset of l. Then, mladrs('l) n (X\l)

- a. since (x\A) s *!t*Cta1xr,4, *iO61e1l(Xl't1= 6, and

It means *at m't*adr6(A)n

105

(l) A is (i, i)-my-a-closed if and onty f m{Aarr,(A) c A,

Q)Ais (i, i)-my-a-open

Proof. Let (X, *lx, *k)
of X.

finally, *!Cts1,e1g A. On the other hand, A 
= ^'r*Ct61'l)' 

It follows

that mtclg(A) = A. Moreover, Ais (i, i)-mv-o-closed"

(i, )-my-a-open. Then, m'J*tntg(l)= l'(2) (=+) Assume that I is

Let us consider the following:

m'r* n drs (,1,) n A = 6'! o 6 1a1 | *'t* c t 6 1x\,4) n'4

= Anm't Ct*$f,1,)

= An@\m'JrInt6(A))

= An(x\/)

-4.

Therefore, m'J*Bdra(A) g X\A.

(e) Assume that m'Jradrr,(A) q X\A.

m'r* a ara Q) n 6 vq) = 1mi! c t 6 (A) fi mk c t a(x\ l) n g \q)

j
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a' For instance, m1]ndr6(2, 3)) = a, but m2ylaarr,({2, 3}) = {1, 3}. Allconditions to approach our purpose are found in the next theorem.

Theorem 3.7. Let (X, *tx, *2y1 t" a biminimal structure space, A be a
subset of x. Then, m't*aar6(l) = a if and only if A is (i, )_my_a_closed
and (i, j)-my-a-open where i, j =1,2 and i * j.

Proof. Let (X,*r,rrrtr) be a biminimal structure space and A be asubset ofX.

(+) Assume that

miaar6e) c X\A.

(i, i)-my-a-open.

mu*Bdr6Ql) = A.

By Theorem 3.6,

Thus, mtoara(l) c e
A is (i, i)-my-o.-closed

and

and

(i, i)-my -a-boundary and Exterior Sets "' 107

Example 4.2. Let x = {1,2, 3}. Define m-structures mlv and *?v o'

thebiminimal structure spaceXas follows: *r* = 10, {1,3}, {2,3}, X} and

*! = 1a, {r}, {2}, {r, 3), {2, 3}, x}.

we have that m|]Exta({3}) = xrm!}ct6(13}) = x\x = a and

mlExt6(3\) = x\m2y\ctd@D = x\{3} = {1, 2}'

Lemma 4.3. Let (X, *tx, 
^2y1 

On a biminimal structure space, A be a

subset of X. Then, for any i, j = 1,2 and i * j ' the following statements

hold:

(l) m'r*Exts(A)a A: A.

Q) mNExt6(A) = x.

(3) miExts(h = a.

@) mu* Ext 6 (x\m't* rxt r, (A)) = m'J* zxt g (,1,)'

Proof. Assume that (X, *k, *k) is a biminimal struchre space and 
'4

is a subset ofX.

(e) Assume that A is (i, i)_my_a_closed and (i, j)_my_a_open. By
Theorem 3.6, we also have m,r*Aar6Ql) 

= 
A and m,!Aar*,(e)g (,Y\l).

Asaresult, m,r*Bdr6@) 
= 

An(x\A),andalso ml!Bdrr,(,1) = a. D
Fbr the next section, we will introduce the concepts of (i, j)_my_a_

exterior sets in biminimar structure space which contain somecharacterizations and several fundamental properties of those sets.

4. (i, i)-my-q, -exterior Sets

Definition 4.l.Let (X, *tx, *2y7 A"a biminimal structure space,l be asubset ofxand x e x' Then,xis called (r, fl-my-a-exteriorpoint of A if
* ' *tlws(x\A)' We denote that the set of all (i, i)-mv-a-exterior point
of Aby m'J*Zxt6Ql), where i, j =l, Z and i * i.

According to Definition 4.1, mlExtl(l) can be rewritten

(1) For the reason that A e *lCts1l,), then X\mkCld(A) = 
x\A.

Furthermore, (xfmiCl s(/)) n A 
= 

A. That is ml Ext a (A) ) A = A.

(2) Since m'J*o*1A1= A and by Definition 4'1, we obtain that

mfnxt6,(A)=X\Q=X.

(3) Similar to (2) and the fact that m'J*Clr,(X)= X,

m'J*rxts(x)= X\X =a.
x\mkctdU).

we then have

I
I

I
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(a) BV Definition 4.1,

ml t*t 6 (x \ml axt r, (.1)) = *k z*t a 1m't* ct * 1e11

m'r* a x t s (,t) = x tmk C I a 1mt u * 1e1) = *k n* t a 1*N u s 1 e11.

Then, m'r* Ext s (x\ml Ext a Ql)) = *k nfi a Qq).

Theorem 4.4, Let (X, *r, *11 t" a biminimal structure space and A,

B be subsets of X with A 
= 

B. Then, minExta@) g m,J*Exta(A), where

i,j=l,2andi*j.

Proof. Assume that (X, *lx, *k) is a biminimal structure space and l,
8 are subsets of X, A E B. Since .'t*Ct*1,11 

= 
*NO61n), we now have

X f m't* C t 6 @) 
= 

x \m'r* C I a U). It fouows that m!r* Ex t 6 @) g mk Ex t a U)

"r,*, 
i, j =7,2 and i * j.

Example 4.5. Let X = {1,2, 3}. Define z-structures m\s and m! onthe

biminimal structure space Xas follows: mry = {A, $\, {2,3\, X} and. m! =
{a, {2}, {1, 3}, X}.

We can see that ml] ext 6 ({t, 2\) g mY Ext a ftD and mp Ext 6({1, 2})

c m2|Axt6({l}), which {l} is a subsetof {1, 2}. Moreover, we also obtain

that mtlExt6({3}) = {t} * x\{:}, m2ytrxts({z}) = {2} + X\{3}, *pr*ts
(x\8)) =z * {3} and m2y\txtr,(x\{3}) = a * $}. Therefore, we need

some conditions to complete those statements.

Theorem 4.6. Let (X, *r, *!1 t" a biminimal structure space and A

be a subset of X. Then,for any i, j = l, 2 and i * j, the following statements

and
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are true'.

(l) A is (i, )-my-a-closed if and onlv if mltExts(A) = X\l'

(2) A is (i, )-my-a-open if and only if m'rrExtd(X\A) = A'

Proof. Assume lhat (X, *lx, *k) is a biminimal structure space and I

is a subset ofX.

(1) (+) Suppose that A is (i, )-mv-cr-closed' Then, murExtd(A) =

lm't*Os(e) = x\A.

(e) Suppose that mlExtsQq)=xrl' Itmeans that x\mlcld(A)=

x\1. since '4 g micts7)' mi*cld'@) = A' Finally' Ais (i' i)-mx-a'

closed. I

(2) (+) Suppose that,4 is (i, i)-mv-a-open' Then, X\l is (i' i)-^x'

cr-closed. Using (1), mlr*rxts(X\,4) = 111,Y\A) = tr'

...
(e) Suppose that mtJ*Extg(X\,4) = ,,4. Wehave

.t = x\mkcl d 6\A) = xr(x\mklnt 6 @)) = *k tnt d (A)'

!

mtlrxts({t,2\)U *Yn*ta(t\) = {1} *

mpoxta(rl)U *Po*s({2, 3}) = x =

Hence, A is (i; i)-my-o'oPen.

From ExamPle 3.5, we have

*tlr*t611t,2) n {3}), whereas

m!]Extagt\ 0 {2, :}). so,

mNnxt6(t)U mNnxt6(8) and *in*t6ptn n)

are not necessary to be equal. In next theorem, we will give some condition

for those sets to be equal. ,,

l
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Theorem 4.7, Let (x, *lx, r!1 u a biminimar stwcture space, A, B
be subsets of X. Then,for any i, j = l, 2 and i * j, we have

(t) mu*Extl?U B) g mknxtd,(A)l*ko*ta@),

Q) mllrxtlU)U 
^krrta@) c mr*rxtr,(An B),

(3) tf A and B are (i, i)_my _a_closed, then

mtcxta(,<)tJ n't*oxt6(B) = *kn*taUn D.
Proof. Assume that (X, *\, .2il is a biminimal structure space, A, B

are subsets ofX.

(1) Since AcAUB and BcAUB, by Theorem 4.4, mulExts
(AU B) g mktxtd,lA) and, m,t*nxtaQ U r) q m,r*nxtr,(a). Therefore,
m'r*Ext6(AU B) c m,t*Ext6@)l m{Extr,(n).

(2)BVusingTheorem4.4and,thefact 
that A0f c A and. AIB E B,

we then have m'r*ExtaQ)gm'j*oxtr,(,0g) ana mf rxtr,(a)g*{n*tr,
Qn B). Lastly, minxta(l)l) m'r*oxtr,(B) c m,r*ExtaUl B).

(3)Assume thatAand,Bwe (i, j)_my_a_closed. Therefore, AOB is
also (1, j)-my-a-closed. By Theorem 4.6, mtlExtaQqn 4 = X\(A) B)
= (x\A) U (xw; = mizxtr,(A)tJ m*Exta@). tr
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