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1. Introductidn
The notion of a bitopological space was introduced by Kelly [4], and that

of a minimal structure by Popa and Noiri [10]. Boonpok et al. combined
these structures and made preliminary studies in [1-3].

In this paper, we introduce and study the notion of (i, j)-m y -B -closure,
(i, j)-my-P -interior and (i, j)-my-p -boundary sets in biminimal structure

spaces.

2. Preliminaries

Definition 2.1 [8]. A subfamily my of the power set P(X) of a

nonempty set X is called a minimal structure (briefly m-structure) on X if
@ emy and X € my. Each member of my is said to be my -open and

the complement of an m y -open set is said to be m y -closed.

Definition 2.2 [S]. Let X be a nonempty set and my_an m-structure on X.
For a subset A of X, the my -closure of 4 and m y -interior of A4 are defined

as follows:

(1) myCl(Ay={F +Ac F, X\F e my},

Q) mynt(A) =U{U :U c 4,U e my }.

Lemma 2.3 [5]. Let X be a nonempty set and my an m-strﬁcture on X.
Fora subset A and B qf X, the following holds:

(1) myCI(X\A) = X\myInt(4) and myInt(X\A4) = X\m xCI(4),
@) If (X\A) € my, then myCI(4) = A and if A € my, then my Int(4)
=4, o PR
(3) myCl(D) = D, myCl(X)=X, mylnt(Q) =® and my Int(X)
= X, : :

(&) If A < B, then myCIl(4) € myCI(B) and myInt(4) < myInt(B),
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(5) Ac myCI(A) and myInt(A) C A4,
(6) myCl(myCl(A)) = myCI(A) and myInt(my Int(A4)) = my Int(A).
Lemma 2.4 [9]. Let X be a nonempty set with a minimal structure my

and A a subset of X. Then x € my —CI(4) if and only if UN A+ D for

every U € m, containing x.

X

Definition 2.5 [3]. Let X be a nonempty set and m]Xm}( be minimal
structures on Y. The triple (X, mY, mfy) is called a bispace (briefly bi
m-space [7]) or biminimal structure space (briefly bimspace [1]).

Let (X, m}(, m,z\z) be a biminimal structure space and A4 a subsets of X.
The my -closure of 4 and the my -interior of 4 with respect to mﬁ( are
denoted by m'yCI(4) and m’y Int(A4), respectively, for i, j=1,2 and i # j.

Definition 2.6 [2]. A subset 4 of a biminimal structure space
(X, mk, m%) is said to be

(1) (G, j)y-my -regular-open if A4 = mf\»lnt(mg(Cl(A)), fori, j=1 or2
and i # 7

() (i, j)-my -semi-open if A < mi\zCl(m/]\.,Int(A)), for i, j =1or2 and
i# J; '

3) (i, j)-my -preopen if A < m&]nt(m/]\;CI(A)), for i, j =1 or 2 and
i+ J;

(@) (i, j)my-a-openif A c mg(lnt(ml{,Cl(mB(Int(A))), fori, j=1 or
2and i # J; ‘

(5) (i, j)-my-B-open if A < myCl(mlyInt(m’yCI(A))), for i, j =1 or
2and i # j. '
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Lemma 2.7 [2]. Let (X, my, m%) be an m-space and A be a subset of
X. Then

(1) A is (i, j)-my -regular-closed if and only if A = m'yClI (m{(Int(A));
(2) 4 is (i, j)-my -semi-closed if and only if mfylnt(m/{,Cl(A)) c 4;
(3)Ais (i, j)-my -preclosed if and only if m}Cl(mg(Int(A)) c 4;

@A is (i, j)-my-o.-closed if and only if m'y Cl(m? Int(m’y CI(4))) < 4;

(5) 4 is (i, j)-my-B-closed if and only if miylnt(mj{,Cl(mﬂ(Int(A)))
c A ' :

Lemma 2.8 [3]. Let (X, ml\z, mlzy) be a biminimal structure space and
{4y 1k e X} afamily of subsets of X.

(1) If 4, is (i, j)-my-o-open for each k € X, then Uke.)t’Ak is
G, jymy-a-open.

Q) If 4 is (i, j)-my-a-closed for each k € KX, then nkeJt’A" is
(i, j)-my-a.-closed.

Definition 2.9 [3]. Let (X, mf\z, mlz\z) be a biminimal structure space

and A4 a subset of X. Then m')’( -o.- closure of 4 and the mg( -o- interior of 4

are defined as follows:
(1) mi{,Cld(A) =({F:ACF, Fis(i, j)-my-a-closed};
@) mg{;lntd(A) =U{U : U c 4, Uis (i, j)-my-a-open}.

Lemma 2.10 [3]. Ler (X, mB(, mg() be a biminimal structure space and

A a subset of X. The following properties hold:
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(n m?\;Cld (4) is (i, j);mX -o.- closed,

(2) mg'(fntd (A) is (i, j)-my-o- open;

(3) A is (i, j)my-a-closed if and only ffmg(Clﬂ (4) = 4;

(4) A is (i, j)-my-o-open if and only ﬁmiln!d (4)= 4

Lemma 2.11 [3]. Let (X, mly, mf() be a biminimal structure space and

A a subset of X. Then, x € m?\',Clﬂ(A) ifand only if U (1 A # @ for every

(i, j)-my -o -openset U containing x.

Lemma 2.12 [3]). Let (X, mY, m%) be a biminimal structure space and
A a subset of X, '

(1) mYCly (X\A) = X\m% Int o (A);
ek 2) Ty Il gy (X\A) = X\mYCly (A).

Definition 2.13 [3]. Let (X, m_ly, mfy) be a biminimal structure space
and ¥ be a subset of X. Define minimal structures m}r and m,zz as follows:
my ={ANY:4de mY} and m} = {BﬂY:Bemfy}. A triple (¥, my, m$)
is called a biminimal structure subspace (briefly bim-subspace) of

1 2
(Xs my, mX)'

Let (¥, my, my) be a biminimal structure subspace of (X, my, m%),
and let A be a subset of Y. The my -closure and my -interior of 4 with respect
to m} are denoted by myCl(4) and my Int(4), respectively (for i =1, 2).
Then mbCI(A4) = ¥ N myCI(4) and myCI(4) = ¥ N mkCI(A).

Proposition 2.14 [3]. Let (Y, my, m}) be a biminimal structure
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subspace of (X, ml\z, mf‘\z) and F a subset of Y. If F is mlym/z\z -closed; then
Fis m}zm}zz -closed.

3. (i, j)-my-B-closure and (i, j)-my -B- interior Sets

Definition 3.1. Let (X, m), m%) be a biminimal structure space and 4

a subset of X. Then m;j(-B -closure of 4 and the m')j(-B -interior of A, where

i, j=1,2 and i # j are defined as follows:

(1) m}Clg(A4) = N{F : AC F, Fis (i, j)-my-B-closed};

) myIntg(4) = UU : U c 4, Uis (i, j)-mx-B-open}.

Example 3.2. Let X = {l, 2, 3}. Define m.—;truc't.ures my and m% on
the biminimal structure space X as follows: my = {@, {1}, {2, 3}, X} and
m% = 1@, {2}, {1, 3}, X}.

Then, by Definition 3.1, we have

mi2Cig((l, 3)) = {1, 3} m¥Clg({l 3) = X,
mEInt ({1, 3}) = {1, 3}, and m¥ Intg({1, 3}) = {1, 3}.

Lemma 3.3. Let (X, ml, mf\z) be a biminimal structure space and A

and B are subsets of X, the following holds:

(1) miClg(@) = @, miClg(X) =X, mntg(@)=2, myinig(X)
=X,

@) A< mClg(A) and myIntg(4) < 4,
@3) If Ac B, then miClg(4) = myClg(B) and miinig(4) c

m')j( Int g(B).
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Proof. Assume that (X, mﬂ(, m/z\/) is a biminimal structure space, 4 and
B are subsets of X.

(1) Since @ and X are both (i, j)-my-B-closed and (i, j)-my-B -open.
So mClg(@)=2, m}Clg(X)=X, mlintg(@)=02, mhig(X)
= X,

(2) and (3). It follows immediately from Definition 3.1. O

Lemma 3.4. Let (X, mY, m%) be a biminimal structure space and A a

subset of X. The following properties hold:
) m')j(Clg(A) is (i, j)-my -B-closed,;
2) mg(lntg(A)zs (i, j)-my -B-open;
(3) A is (i, jy-my-B-closed if and only ifm'){,Clg (4) = 4
(4) A is (i, j)-my-B-open if and only if mij\;Inté(.gs = A o
Proof. (1) and (2). They are obvious by Definition 3.1.

(3) This follows from Definition 3.1 and (1) immediately.

(4) This follows from Definition 3.1 and (2) immediately. a

Lemma 3.5. Let (X, mYy, m%) be a biminimal structure space and A
and B are subsets of X, the following holds:

(1) If A and B are (i, j)-my -B-closed, then A\ B is (i, j)—m'X -B-closed.

(2) If A and B are (i, j)-my-B-open, then AU B is (i, j)-myx-B-open.

Proof. Assume that (X, ml\z, mg() is a biminimal structure space, 4 and

B are subsets of X.

(1) Suppose that 4 and B are (i, j)-my-B-closed; then m%Clg(4) = 4
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and mf{,Clg(B) = B, respectively. Since 4 B g A and AN B < B, we
obtain m¥%Clg(4 N B)  myClg(4) and miClg(4N B) c m’Clg(B).
It means that mﬁ{,Clga(A NB)c AN B. On the other hand, 4N B c
m%Cl (AN B). Therefore, mi{,Cl #(AN B) = A B. Consequently, 4 B
is (i, j)-my-B -closed.

(2) Similar to 1. O

Remark 3.6. (1) The union of two (i, j)-my-B-closed is not a
(i, j)-my-B-closed in general. For instance, by Example 3.2, {2} and {3}
are (1, 2)-my -B -closed, whereas {2, 3} is not (1, 2)-my -B -closed. Moreover,
{1} and {3} are (1, 2)-m x -B-closed, whereas {1, 3} is not (1, 2)-m x -B -closed.

(2) The intersection of two (i, j)-my - -open is nota (i, j)-my -p-open
in general. For instance, by Example 3.2, {1, 2} and {1, 3} are (1, 2)-my-B-
closed, whereas {l}lsnot »(»1-’ 2)—m x -B -closed: Moreover, {1, 2} and’ {2, 3}
are (2, 1)-my-B -closed, whereas {2} is not (2, 1)-my - -closed.

Lemma 3.7. Let (X, Im&, mfy) be a biminimal structure space and
{By : k € X} afamily of subsets of X. A

(1) If By is (i, j)-mx-B-open for each k € X, then Ukeka is
(i, j)-mx-B-open. ‘

() If By is (i, j)-my-B-closed for each k € X, then ﬂkEka is
(i, j)y-my-B-closed.

Proof. (1) Assume that By.is (i, j)-my-B-open for each k € . It

means that By mf\zCl(m/{,Int(mf\;CI(Bk))), for each k € ¢ which i, j
=1lor2andi# j. Since B, Ukex By, forall p e X. We have that
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mly Cl(m%, Int(m'y CI(B,,))) < mg(CI(m{(lm(mg(cz(Uke g Bkm, for all

p € J . Let us consider

i Jj j
Ukex B, Upex mly Cl(m?, Int(m'y CI(B,)))

c mfyCl(m/{,Int(mi\/Cl(Ukex Bk))) forall p e J¥.

That is, Ukex By c minl(mf\,Int(m}Cl(Ukex By )D
Therefore, [ J, _ v Br is (i, j)-mx - -open foreach k € X

(2) This follows from (1) immediately. a

Lemma 3.8. Let (X, my, m%) be a biminimal structure space and A a

subset of X. Then x e m}Clg(A) if and only if VNA# D for every
myClg

(i, j)-my -B-open set V containing x.

Proof. Let (X, m), m%) be a biminimal structure space and 4 a subset
of X.

(=) Assume that x € m?\;Clg(A). Thus, x € F, for each F, which is
(i, j)-my -B -closed and A < F. Suppose that there exists (i, j)-my-p -
openset, x e Vand V(1 4=. Thatis, V < X\4, or 4 < X\V. Since x ¢

X\, which is (i, j)-my-B-closed, x ¢ m}Clg(4), which disagree with
the assumption. It follows that ¥ (1 4 # @ for every (i, j)-my - -open set
- -V containing X. - i

(<) Suppose that ¥ N A # & for every (i, j)-my-B-open set V
" containing x. Assume thét X e m')j(Clg(A). It follows that there exists F,
which is (i, j)-my-B -closed and 4 < F suchthat x ¢ F. Then, x € X\F.
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Since (X\F)NF =@ and Ac F, thus (X\F)NF =@, but X\F is

(i, j)-my-B -open set such that (X\F)( F # O, then x € m} Clg(A) O

Lemma 3.9. Let (X, m}(, m%) be a biminimal structure space and A a
subset of X,

(1) mY Int@(X\A) X\m? CIQ(A);
@) mlClg(X\d) = X\m" Int g (4).

Proof. Assume (X, m), m%) is a biminimal structure space and 4 a
subset of X.

(1) Suppose that x ¢ X\m/, Clg (4). Thus, x € Xm! CIQ(A) By Lemma
3.8, for every (i, j)-my-p-open V such that x € ¥ and V' (1 4 # &. That

is, x mXIm‘g (X\A). It follows that m" Intga (X\4) ¢ X\m! Clg (A).

Conversely, since m Clg(A) is (i, j)-my-P-closed, X \m” Cl@(A) is
(i, j)-myx-B-open. Since A c m’Clg(A), we have X\m%Clg(4) € X\A4.
Furthermore, by Definition 3.1, we obtain X \m! Clgg(A) c m Intg (X\A).
Consequently, m" Int_@(X\A) X\m! CIQ(A).

(2) This follows from (1) immediately. O

Lemma 3.10. Let (X; mYy, m%) be a biminimal structure space and A

and B are subsets of X.
(1) IfA and B are (i, j)-my-p -closed, then

m? Clg (AN B) = m,Clg(4) N m%Clg(B).
(2) IfA and B are (i, j)-my-p -open, then

mg(lntg(A U B) = m" Intg(A) U m! Int_@(B)
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(3) If A and B are (i, j)}-my-B-closed and AU B is (i, j)-my-B -
closed, then m%Clg(4 U B) = m%Clg(4)U m).Clg(B).

(4) If A and B are (i, j)-my-B-open and AN B is (i, j)-my-B-open,
then m’)'j(fntg(/! N B)= mgffmg AN mi{;]nrg (B).

Proof. Assume that (X, m)y, m%) is a biminimal structure space and A
and B are subsets of X.

(1) Let 4 and B be (i, j)-my-B -closed. Then, mj{,Cl_g (4)=A and
m;f(C‘lQ (B) = B.By Lemma 3.5 (1), AN B is (i, j)}-my -p-closed. It follows

that m%Clg (AN B) = AN B = m4Clg(A) N mYClg(B).

(2)Similar to (1), m%, Int g (4U B) = AU B = mY, Int 5 (A)UmY}, Int 5 (B).

(3) Let 4, Bbe (i, j)-my-B-closed and AU B a (i, j)-my -p-closed. We

" have that % Clg (4) = A, mf{,_CIQ(B) = B and mg,C'l a#(4AUB)=4UB.

Therefore, m%Clg(4U B) = m¥.Clg(4)U mClg(B).
(4) Similar to (3), m Intg(4 N B) = mY it g(4) N mYIntg(B). O
4. (i, j)-my -B-boundary Sets

Based on the general topology [6], the boundary of a subset 4 of a
topological space X are the set of points which can be approached both from
the closure of 4 and from the closure of the outside of A. Therefore, in this
section, we define the new definitions and construct their properties of

(i, j)-myx -p -boundary sets in biminimal structure spaces.

Definition 4.1. Let (X, m}x, m}) be.a biminimal structure space, 4 be a

subset of X and x € X. Then, x is called (i, j)}-my-P -boundary point of A if '
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x € m')j(Clg(A) N m')j(Clga (X\4). We denote that the set of all (i, j)-my-B-

boundary point of 4 by m% Bdrg(4), where i, j =1,2 and i # j.

From the Definition 4.1, mY, Bdrg(4) = m%Clg(4) N m%Clg(X\A4).

Example 4.2. Let X = {1, 2, 3}. Define m-structures mYy and mg( on

the biminimal structure space X as follows: mYy = {@, {1}, {2}, {1, 3}, X}
and m% = {3, {3}, {1, 2}, {2, 3}, X}. By the Definition 4.1, we obtain that

mY, Bdrg ({1, 3}) = m%Cly ({1, 3}) N mY Clg(X\{1, 3}).
Consequently, m}?Bdrgg (1, 3) = {1, 2} and m¥' Bdrg({l, 3}) = @.

Lemma 4.3. Let (X, mg(, mg() be a biminimal structure space and A be

a subset of X. Then m% Bdrg(A) = mg.(Bdrgg(X\A), where i, j =1, 2 and
i# .

Proof. For i, j = 1,2 and i # j. By Definition 4.1, m Bdrg(4) =
m? Clg(4) N\ m%Clg(X\4) and also m% Bdrg(X\A) = m}Clg(X\4) N
mY. Clg(X\(X\A4)) = m%Clg(X\4) N m%Clg(A4). Consequently,

m Bdrgg(A) = m% Bdry(X\4), where i, j=1,2and i = j. O

Lemma 4.4. Let (X, m}\z, m,z\z) be a biminimal structure space, A be a
subset of X. Then for any i, j = 1,2 and i # j, the following statements are
hold:

(1) m% Bdrg(A) is (i, j)-my-B -closed.

(2) m, Bdrg(A) = m%Clg(d)\m¥ Int g (4).

(3) mYBdrg(A) N\ mY Intg(4) = @.
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4) m" Bdrgg(A) N m Intga (X\4) =@.
(5) m" Clg (4) = m Ba’r_gg(A) U m! Intg(A)

6) X =mh Intg(A)Um Ba’rgg(A)Um  Intg(X\A) is a pairwise

disjoint union.
(7) m Bdrg(m Intg(A)) c m' Bdr_g(A)
(8) m! Bdrga(m')j(Clg (4)) c m" Bdrga(A)

Proof. Assume that (X, m}(, m/ZY) is a biminimal structure space and A4,

B are subsets of X.

(1) Since m} Clg(A) and m! Clg(X \A) are (i, j)-my-B-closed and
by Lemma 3.5, we obtain that m* Clg(A)ﬂ m" Clg(X\A) is (i, j)-my-B-

closed. Finally, by Definition 3.1, we then have m" Bdrgg(A) is (4, jymy-
B-closed.

(2) m% Bdrg(4) = m%,Clg(4) N m%Clg(X \ 4)
= mYClg(4) N (X\m Intg (A))
= mYClg (A)\m% Int g (4).
(3) By (2), we have that mY, Bdrg(4) N\ mY Intg(4) = @.
(4) By Lemma 4.3 and (2), we have mY Bdrg(4) N\mY  Int g(X\d) = @.
(5) It is clearly by (2).
6) m XIntg(A)Um Bdrg(A)Um  Int g (X\A)

= mXCIga(A) U m! Intg(X\A)

= X.
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By (3) and (4), we obtain that m} Bdrgg(A) N m InIQ (4) =D and
Ba’rg (4)N m? ]ntg (X\4) = @. In order to complete the proof, we need
to show that m" Intg(A) N m} Intg;(X\A) = . As aresult of mi{,]nt.% (4)

c A4 and m" Intg (X\4) c X\A4. Accordingly, m 17‘1133 (AN m! Int.@ (X\4)
= . Therefore,

X = m')j(]ntg (A) U m Bdrg (A) U m! Intgg(X\A)
is a pairwise disjoint union. The proof is completed.
(7) By (2), m} Bdrg (m Intg (4)) = m¥% U Clg (m Intg; (A))\m Int‘g
(m  Intg(4)). Since, m Cl_g(m  Intg(A)) < m" Clga (4) and m Intgg
(m Intg(A)) = m’ Intga (A). Thus, m" Bdr_g; (m Intg(4)) < m U Clg (A)\

mXIntg(A) m" Bdrg(A)

@) By (), ml Bdrg(m"f'ag(A)):m’)'f(cg@(m’)'f;czg(A))\m;'f'(lnrg
(m ' Clg(4)). Since, mg(Clg(m  Clg(A)) = m! Clg(A) and m" Int.ga(A)
c mXIntgg(m  Clg(4)). So,

m'l Bdrg(mY,Clg(A4)) < m',Clg(A)\mY Int g(A4) = mY, Bdrg (A). 0

By Example 4.2, we have m¢Bdrg({2}) = {1, 2}, and m% Bdrg({l, 2})
= {3}, which are (1, 2)-m y-B -closed and (2, 1)-my -B - closed, respectively.

Furthermore,

m'¢ Bdrg (m}?fmg({ ) c mEBdrg ({z})
m% Brg(m¥ ntg($3))) ¢ m¥'Bdrg({3}),

m'? Barg (m2Clg ({l, 2))) < m¥? Bdrg ({L, 2)),



(4, j)-my-B -boundary Sets in Biminimal Structure Spaces 1527

and
ZIBd 21 21
my Bdrg(m Clg ({2, 3})) c mx Bdrg ({2, 3}).
Theorem 4.5. Let (X, mf\z, m/zy) be a biminimal structure space, A be a
subset of X. Then, forany i, j =1, 2 and i # j, we obtain that

(1) 4 is (i, jymy-p -closed if and only if it contains all of its (i, j)-
m yx -B -boundary point.

() A is (i, j)-my-B -open if and only if the complement of A contains all

of (i, j)-my-B-boundary point of A.

Proof. Let (X, m, m%) be a biminimal structure space, 4 be a subset
of X.

(1) (=) Assume that 4 is (i, j)-my-B -closed. That is, mj{,Clgv(A) = A

- Next, we want to show that m% Bdrg(4) N (X\A4) = &. By Definition 4.1,
mY Bdrg(A) N (X\4) = (m%Clg(4) N mY,Clg(X\A) N (X\4)
= AN (X\4)
=@

Therefore, mi{,.Bdrg(A) & A,

(<) Let m¥ Bdrg(4) be a subset of A. Then, mY Bdrg(4) N (X\4)
= @. Since X\A4 c myClg(X\A), myClg(4)N (X\4) =, and finally,
_m’).j(CI.@(A) C A. On the other hand, 4 ¢ m')j(Clg(A). It follows that
'mj{,Clg(A) = A Moreover,A is (i, j)-my-B -closed.

(2) This follows by Lemma 4.3 and (1). a '
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Example 4.6. Let X = {1, 2, 3}. Define m-structures m and m}( on the

biminimal structure space X as follows: my = {@, {2}, {1, 3}, X} and m% =
2, {1}, 3} {1, 2}, {2, 3}, x}.

It is clear that m}¢ Bdrg ({2, 3}) = @ {2, 3}. Whereas, m}\;Bdrgg {1, 3p)
= {2} ¢ {1, 3}. Likewise, m¥'Bdrg({l, 3}) = @ c {1, 3}. Whereas, m%'Bdrg
({1}) = {1, 3} ¢ {1}. Since, {2, 3} and ({1, 3}) are (I, 2)-my-B-closed and
(2, 1)-mx -B -closed, respectively. On the other hand, m}(zBa’rga {2h = {2}
« {1, 3}, and m¥ Bdrg ({1}) = {1, 3} ¢ {2, 3}, because of {2} and {1} are not
(1, 2)-my-B-open and (2, 1)-my-B -open.

In order to show that m%Bdrg(A) is equal to & where i, j =1, 2 and
i # j. We need some conditions to derive them such as in Example 4.6, we

can see that m'¢Bdrg({, 2})."=.{2}, on while m¥Bdrg({2}) = @. All
. conditions to approach our purpose are found in the next theorem.

Theorem 47Let(X , m}(,mg()beabzmmzmal structure space, A be a
~ subset of X. Then, mg(Bdr‘@(A) =@ ifand only if A is (i, j)-my-B -closed
and (i, j)-my-B -open where i, j =1,2 and i # j.

Proof. Let (X, ml\z, mg() be a biminimal structure space and 4 be a
subset of X.

(=) Assume that mY Bdrg(4) = @. Thus, mY Bdrg(4) c 4 and
mg;Bdrg(A) c X\A4. By Theorem 4.5, A is (i, j)}-my-B-closed and
(i, j)-my-B -open.

(<) Assume that 4 is (i, j)-my-B -closed and (i, j)-my-P -open. By
Theorem 4.5, we also have mf{',Bdrg (4) < A4 and mg;Bdrg(A) c X\A4. As

a result, m;j(Bdrg (4) € AN (X\4), and also mZBdrg(A) = & O
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From Example 4.6, since {1}, {3}.{l, 2}, {2, 3} are both (1, 2)-my -p-
closed and (1, 2)-my-p -open. Thus, the boundary of those sets are equal to
@. Similarly, m} Bdrg({2}) = m¥Bdrg({3)) = @, since {2} and {3} are
both (2, 1)-my -B -closed and (2, 1)-my -p -open.

Definition 4.8. Let (X, m, miz) be a biminimal structure spaces and ¥
be a subset of X. Define m} and mp as follows: my={ANY:de mi}
and m§ ={BNY:Be m% ). A triple (¥, my, m}) is called a biminimal
structure subspace of (X, my, m%).

Let (7, m}z, m%) be a biminimal structure subspace of (X, mfy, mg(),
and let A4 be a subset of Y. The (i, j)my-B-closure and (i, j)-my-B-interior
of A with respect to m;“f are denoted by m;'j;Cl #(A4) and mi’ilnt‘g (4),
respectively (fori=1,2 and i # j). Then m'}]f.Clsg(A) =YN mf{rCl_@(A)
,,,,,,md,,m;{fm_@ A=rn mi{-!nt_gg (A4). Moreover, we denote that m;:’;Bdrg (4)

= ¥ N m% Bdrg(4).

Lemma 4.9. Let (¥, mB{ m}zz) be a biminimal structure subspace of
(X, my, mIZY) and A a subset of Y. If A is (i, j)-my-B -closed, then A is
(i, j)-my-B-closed.

Proof. Let (Y, my, m¥) be a biminimal structure subspace a
(X, m, mfy) and 4 a subset of Y. Suppose that 4 is (i, j)-my-p -closed,
then m"{,Clg(A) =4 Coﬁsider, m;zClg(A) = mf{;Clg (ANY=4NY =
A. Therefore, A is (i, j)-my-B-closed. O

From Example 4.6, let ¥ = {1, 3}, we have that m} = {3, {I, 3} and
my = {2, {1}.03}, {1, 3}}. It follows that @, {1}, {3}, {1, 3} is (1, 2)-my -B-
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' closed; and @, {1, 3} is (2, 1)-my-B-closed; since, @, {1}, {3}, {1, 3} is
(1, 2)-my-B -closed; and O, {1, 3} is (2, 1)-my-B -closed, respectively.
Remark 4.10. (1) The converse of Lemma 4.9 is not true.
(2) If 4 is not a subset of Y and (i, j)-my-p -closed, then A4 is not

necessary be (i, j)-my-B-closed.

From Example 4.6, {1, 3} is (I, 2)-my -B -closed; but {1, 3} is not (1, 2)-
mx -B-closed. Moreover, {2}, {1, 2}, and {2, 3} is not a subset of ¥ and
(1, 2)-myx-B -closed, whereas, {2}, {1, 2}, and {2, 3} is not (1, 2)-m-p-
closed.

Lemma 4.11. Let (Y, my, m3) be a biminimal structure subspace of
(X, mb, m,z\z ). If mf{,Bdrg (A)c?Y, then mg{Bdrg (A) is (i, j)-my -B -closed.

Proof. It is clearly by Lemma 4.4 (1) and Lemma 4.9. O

Corollary 4.12. Let (Y, m}/, m)zz) be a biminimal structure subspace of
(X, my, m%) and 4 a subset of Y. If m%Bdrg (A4) is a subset of Y. Then

mi{;Bdrg (4) = mgBdr@ (A).

Proof. Let (¥, mpy, m}) be a biminimal structure subspace of

(X, m}\z, m}() and 4 a subset of Y. This follows m;.j,.Bdr_Q(A) =Y

mf{,Bdrg(A) = m:{,Bdrg(A). The proof is completed. O
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